Have a personal or library account? Click to login

References

  1. Ali R, Patel S, Hussain T (2021) Angiotensin type 2 receptor activation limits kidney injury during the early phase and induces Treg cells during the late phase of renal ischemia. Am J Physiol Renal Physiol 320:F814–F825. https://doi.org/10.1152/ajprenal.00507.2020
  2. Barsha G, Walton SL, Kwok E et al (2021) Relaxin attenuates organ fibrosis via an angiotensin type 2 receptor mechanism in aged hypertensive female rats. Kidney360 2:1781–1792. https://doi.org/10.34067/KID.0002722021
  3. Begorre MA, Dib A, Habchi K et al (2017) Microvascular vasodilator properties of the angiotensin II type 2 receptor in a mouse model of type 1 diabetes. Sci Rep 7:45625. https://doi.org/10.1038/srep45625
  4. Caillon A, Grenier C, Grimaud L et al (2016) The angiotensin II type 2 receptor activates flow-mediated outward remodelling through T cells-dependent interleukin-17 production. Cardiovasc Res 112:515–525. https://doi.org/10.1093/cvr/cvw172
  5. Colin M, Delaitre C, Foulquier S et al (2023) The AT1/AT2 receptor equilibrium is a cornerstone of the regulation of the renin angiotensin system beyond the cardiovascular system. Molecules 28:5481. https://doi.org/10.3390/molecules28145481
  6. Dhande I, Ali Q, Hussain T (2013) Proximal tubule angiotensin AT2 receptors mediate an anti-inflammatory response via interleukin-10: role in renoprotection in obese rats. Hypertension 61:1218–1226. https://doi.org/10.1161/HYPERTENSIONAHA.111.00422
  7. Dhande I, Ma W, Hussain T (2015) Angiotensin AT2 receptor stimulation is anti-inflammatory in lipopolysaccharide-activated THP-1 macrophages via increased interleukin-10 production. Hypertens Res 38:21–29. https://doi.org/10.1038/hr.2014.132
  8. Dimitrijevic I, Rissler P, Luts L et al (2011) Reduced expression of angiotensin II and angiotensin receptor type 1 and type 2 in resistance arteries from nasal lesions in granulomatosis with polyangiitis (Wegener’s granulomatosis). Scand J Rheumatol 40:448–452. https://doi.org/10.3109/03009742.2011.593545
  9. Fatima N, Ali R, Faisal T et al (2023) Macrophage angiotensin AT2 receptor activation is protective against early phases of LPS-induced acute kidney injury. Am J Physiol Renal Physiol 325:552–563. https://doi.org/10.1152/ajprenal.00177.2022
  10. Ghiggeri GM, Seitz-Polski B, Justino J et al (2020) Multi-autoantibody signature and clinical outcome in membranous nephropathy. Clin J Am Soc Nephrol 15:1762–1776. https://doi.org/10.2215/CJN.02500220
  11. Gwathmey TM, Shaltout HA, Pendergrass KD et al (2009) Nuclear angiotensin II type 2 (AT2) receptors are functionally linked to nitric oxide production. Am J Physiol Renal Physiol 296: 1484–1493. https://doi.org/10.1152/ajprenal.90766.2008
  12. Haithcock D, Jiao H, Cui XL et al (1999) Renal proximal tubular AT2 receptor: signaling and transport. J Am Soc Nephrol 10(Suppl 11):S69–S74.
  13. Hong NJ, Garvin JL (2012) Angiotensin II type 2 receptor-mediated inhibition of NaCl absorption is blunted in thick ascending limbs from Dahl salt-sensitive rats. Hypertension 60:765–769. https://doi.org/10.1161/HYPERTENSIONAHA.112.199216
  14. Houston BA, Schneider AL, Vaishnav J et al (2017) Angiotensin II antagonism is associated with reduced risk for gastrointestinal bleeding caused by arteriovenous malformations in patients with left ventricular assist devices. J Heart Lung Transplant 36: 380–385. https://doi.org/10.1016/j.healun.2016.12.016
  15. Huerta MÁ, Garcia MM, García-Parra B et al (2023) Investigational drugs for the treatment of postherpetic neuralgia: systematic review of randomized controlled trials. Int J Mol Sci 24:12987. https://doi.org/10.3390/ijms241612987
  16. Koffler D, Schur PH, Kunkel HG (1967) Immunological studies concerning the nephritis of systemic lupus erythematosus. J Exp Med 126:607–624. https://doi.org/10.1084/jem.126.4.607
  17. Kulkarni K, Patel S, Ali R et al (2023) Angiotensin II type 2 receptor activation preserves megalin in the kidney and prevents proteinuria in high salt diet fed rats. Sci Rep 13:4277. https://doi.org/10.1038/s41598-023-31454-6
  18. Lech M, Anders HJJ (2013) The pathogenesis of lupus nephritis. J Am Soc Nephrol 24:1357–1366. https://doi.org/10.1681/ASN.2013010026
  19. Li M, Nguyen L, Ferens D et al (2023) Novel AT2R agonist, β-Pro7Ang III, is cardio- and vaso-protective in diabetic spontaneously hypertensive rats. Biomed Pharmacother 165:115238. https://doi.org/10.1016/j.biopha.2023.115238
  20. Liao MC, Miyata KN, Chang SY et al (2022) Angiotensin II type-2-receptor stimulation ameliorates focal and segmental glomerulo-sclerosis in mice. Clin Sci 136:715–731. https://doi.org/10.1042/CS20220188
  21. Liao MC, Zhao XP, Chang SY et al (2017) AT2R deficiency mediated podocyte loss via activation of ectopic hedgehog interacting protein (Hhip) gene expression. J Pathol 243:279–293. https://doi.org/10.1002/path.4946
  22. Liles C, Li H, Veitla V et al (2015) AT2R autoantibodies block angiotensin II and AT1R autoantibody-induced vasoconstriction. Hypertension 66:830–835. https://doi.org/10.1161/HYPERTENSIONAHA.115.05428
  23. Matavelli LC, Zatz R, Siragy HM (2015) A nonpeptide angiotensin II type 2 receptor agonist prevents renal inflammation in early diabetes. J Cardiovasc Pharmacol 65:371–376. https://doi.org/10.1097/FJC.0000000000000207
  24. Mifune M, Sasamura H, Nakazato Y et al (2001) Examination of angiotensin II type 1 and type 2 receptor expression in human kidneys by immunohistochemistry. Clin Exp Hypertens 23: 257–266. https://doi.org/10.1081/ceh-100102664
  25. Mishra JS, Chen DB, Kumar S (2022) AT2R activation increases in vitro angiogenesis in pregnant human uterine artery endothelial cells. PLoS One 17:e0267826. https://doi.org/10.1371/journal.pone.0267826
  26. Mohater S, Qahtan S, Alrefaie Z et al (2023) Vitamin D improves hepatic alterations in ACE1 and ACE2 expression in experimentally induced metabolic syndrome. Saudi Pharm J 31:101709. https://doi.org/10.1016/j.jsps.2023.101709
  27. Nag S, Patel S, Mani S et al (2019) Role of angiotensin type 2 receptor in improving lipid metabolism and preventing adiposity. Mol Cell Biochem 461:195–204. https://doi.org/10.1007/s11010-019-03602-y
  28. Nagami GT, Plumer AK, Beyda RM et al (2014) Effects of acid challenges on type 2 angiotensin II receptor-sensitive ammonia production by the proximal tubule. Am J Physiol Renal Physiol 307:F53–F57. https://doi.org/10.1152/ajprenal.00466.2013
  29. Naito T, Ma LJ, Yang H et al (2010) Angiotensin type 2 receptor actions contribute to angiotensin type 1 receptor blocker effects on kidney fibrosis. Am Physiol J Renal Physiol 298:F683–F691. https://doi.org/10.1152/ajprenal.00503.2009
  30. Okada H, Inoue T, Kikuta T et al (2006) A possible anti-inflammatory role of angiotensin II type 2 receptor in immune-mediated glomerulonephritis during type 1 receptor blockade. Am J Pathol 169:1577–1589. https://doi.org/10.2353/ajpath.2006.060178
  31. Patel S, Dhande I, Gray EA et al (2019) Prevention of lipopolysaccharide-induced CD11b(+) immune cell infiltration in the kidney: role of AT2 receptors. Biosci Rep 39:BSR20190429. https://doi.org/10.1042/BSR20190429
  32. Patel SN, Ali Q, Hussain T et al (2016) Angiotensin II type 2-receptor agonist C21 reduces proteinuria and oxidative stress in kidney of high-salt-fed obese Zucker rats. Hypertension 67:906–915. https://doi.org/10.1161/HYPERTENSIONAHA.115.06881
  33. Piqueras L, Kubes P, Alvarez A et al (2000) Angiotensin II induces leukocyte-endothelial cell interactions in vivo via AT(1) and AT(2) receptor-mediated P-selectin upregulation. Circulation 102:2118–2123. https://doi.org/10.1161/01.cir.102.17.2118
  34. Sampson AK, Moritz KM, Jones ES et al (2008) Enhanced angiotensin II type 2 receptor mechanisms mediate decreases in arterial pressure attributable to chronic low-dose angiotensin II in female rats. Hypertension 52:666–671. https://doi.org/10.1161/HYPERTENSIONAHA.108.114058
  35. Savoia C, D’Agostino M, Lauri F et al (2011) Angiotensin type 2 receptor in hypertensive cardiovascular disease. Curr Opin Nephrol Hypertens 20:125–132. https://doi.org/10.1097/MNH.0b013e3283437fcd
  36. Shoaib RMS, Yahia S, Elsaid A et al (2019) Angiotensin II type 2 receptor gene polymorphisms and serum angiotensin-converting enzyme level in Egyptian children with systemic lupus erythematosus. Lupus 28:223–233. https://doi.org/10.1177/0961203318820707
  37. Shum M, Pinard S, Guimond MO et al (2013) Angiotensin II type 2 receptor promotes adipocyte differentiation and restores adipocyte size in high-fat/high-fructose diet-induced insulin resistance in rats. Am J Physiol Endocrinol Metab 304:E197–E210.
  38. Siragy HM (2000) AT(1) and AT(2) receptors in the kidney: role in disease and treatment. Am J Kidney Dis 36(3 Suppl 1):S4–S9. https://doi.org/10.1053/ajkd.2000.9684
  39. Sun Y, Li Y, Wang M et al (2020) Increased AT2R expression is induced by AT1R autoantibody via two axes, Klf-5/IRF-1 and circErbB4/miR-29a-5p, to promote VSMC migration. Cell Death Dis 11:432. https://doi.org/10.1038/s41419-020-2643-5
  40. Suzuki J, Iwai M, Nakagami H et al (2002) Role of angiotensin II-regulated apoptosis through distinct AT1 and AT2 receptors in neointimal formation. Circulation 106:847–853. https://doi.org/10.1161/01.cir.0000024103.04821.86
  41. Suzuki K, Han GD, Miyauchi N et al (2007) Angiotensin II type 1 and type 2 receptors play opposite roles in regulating the barrier function of kidney glomerular capillary wall. Am J Pathol 170: 1841–1853. https://doi.org/10.2353/ajpath.2007.060484
  42. Szymczak M, Heidecke H, Żabińska M et al (2022) Angiotensin II Type 1 receptor antibodies are higher in lupus nephritis and vasculitis than other glomerulonephritis patients. Arch Immunol Ther Exp 70:23. https://doi.org/10.1007/s00005-022-00660-x
  43. Tsai CY, Li KJ, Shen CY et al (2023) Decipher the immunopathological mechanisms and set up potential therapeutic strategies for patients with lupus nephritis. Int J Mol Sci 24:10066. https://doi.org/10.3390/ijms241210066
  44. Wolf G, Harendza S, Schroeder R et al (2002) Angiotensin II’s anti-proliferative effects mediated through AT2-receptors depend on down-regulation of SM-20. Lab Invest 82:1305–1317. https://doi.org/10.1097/01.lab.0000029207.92039.2f
  45. Yahata Y, Shirakata Y, Tokumaru S et al (2006) A novel function of angiotensin II in skin wound healing. Induction of fibroblast and keratinocyte migration by angiotensin II via heparin-binding epidermal growth factor (EGF)-like growth factor-mediated EGF receptor transactivation. J Biol Chem 281:13209–13216. https://doi.org/10.1074/jbc.M509771200
  46. Yanofsky SM, Dugas CM, Katsurada A et al (2021) Angiotensin II biphasically regulates cell differentiation in human iPSC-derived kidney organoids. Am J Physiol Renal Physiol 321:F559–F571. https://doi.org/10.1152/ajprenal.00134.2021
  47. Yu J, Wang S, Shi W et al (2021) Roxadustat prevents Ang II hyper-tension by targeting angiotensin receptors and eNOS. JCI Insight 6:e133690. https://doi.org/10.1172/jci.insight.133690
  48. Zhang F, Lei L, Huang J et al (2022) G-protein-coupled receptor kinase 4 causes renal angiotensin II type 2 receptor dysfunction by increasing its phosphorylation. Clin Sci 136:989–1003. https://doi.org/10.1042/CS20220236
  49. Zhuo JL, Li XC (2019) Angiotensin III/AT(2) receptor/NHE3 signaling pathway in the proximal tubules of the kidney: a novel natriuretic and antihypertensive mechanism in hypertension. J Am Heart Assoc 8:e012644. https://doi.org/10.1161/JAHA.119.012644
  50. Zweck E, Karschnia M, Scheiber D et al (2023) Receptor autoantibodies: associations with cardiac markers, histology, and function in human non-ischaemic heart failure. ESC Heart Fail 10:1258–1269. https://doi.org/10.1002/ehf2.14293
Language: English
Submitted on: Jan 24, 2024
Accepted on: Jun 24, 2024
Published on: Aug 19, 2024
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2024 Maciej Szymczak, Harald Heidecke, Marcelina Żabińska, Dagna Rukasz, Krzysztof Wiśnicki, Krzysztof Kujawa, Katarzyna Kościelska-Kasprzak, Magdalena Krajewska, Mirosław Banasik, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.