Have a personal or library account? Click to login
Abnormalities of Coagulation and Fibrinolysis Assessed by Thromboelastometry in an Endotoxic Shock Model in Piglets Treated with Nitric Oxide and Hydrocortisone Cover

Abnormalities of Coagulation and Fibrinolysis Assessed by Thromboelastometry in an Endotoxic Shock Model in Piglets Treated with Nitric Oxide and Hydrocortisone

Open Access
|Jun 2024

References

  1. Abdel Razeq SS, Norwitz ER (2018) Septic shock. Critical Care Obstetrics: 599–629. <a href="https://doi.org/10.1002/9781119129400.ch38" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/9781119129400.ch38</a>
  2. Adamik B, Frostell C, Paslawska U et al (2021) Platelet dysfunction in a large-animal model of endotoxic shock; effects of inhaled nitric oxide and low-dose steroid. Nitric Oxide 108:20–27. <a href="https://doi.org/10.1016/j.niox.2020.12.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.niox.2020.12.008</a>
  3. Adamik B, Gozdzik W, Jakubczyk D et al (2017) Coagulation abnormalities identified by thromboelastometry in patients with severe sepsis: The relationship to endotoxemia and mortality. Blood Coagul Fibrinolysis 28:163–170. <a href="https://doi.org/10.1097/MBC.0000000000000572" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/MBC.0000000000000572</a>
  4. Adamzik M, Eggmann M, Frey UH et al (2010) Comparison of thromboelastometry with procalcitonin, interleukin 6, and C-reactive protein as diagnostic tests for severe sepsis in critically ill adults. Crit Care 4:R178. <a href="https://doi.org/10.1186/CC9284" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/CC9284</a>
  5. Albert J, Harbut P, Zieliński S et al (2007) Prolonged exposure to inhaled nitric oxide does not affect haemostasis in piglets. Intensive Care Med 33:1594–1601. <a href="https://doi.org/10.1007/S00134-007-0666-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/S00134-007-0666-3</a>
  6. Albert J, Wallén NH, Li N et al (1999) Neither endogenous nor inhaled nitric oxide influences the function of circulating platelets in healthy volunteers. Clin Sci 97:345–353. <a href="https://doi.org/10.1042/CS19990064" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1042/CS19990064</a>
  7. Bloch KD, Ichinose F, Roberts JD Jr et al (2007) Inhaled NO as a therapeutic agent. Cardiovasc Res 75:339–348. <a href="https://doi.org/10.1016/j.cardiores.2007.04.014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cardiores.2007.04.014</a>
  8. Boyd CJ, Claus MA, Raisis AL et al (2018) Hypocoagulability and platelet dysfunction are exacerbated by synthetic colloids in a canine, hemorrhagic shock model. Front Vet Sci 5:279. <a href="https://doi.org/10.3389/fvets.2018.00279" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fvets.2018.00279</a>
  9. Chong DLW, Sriskandan S (2011) Pro-inflammatory mechanisms in sepsis. Contrib Microbiol 17:86–107. <a href="https://doi.org/10.1159/000324022" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1159/000324022</a>
  10. Da J, Chen L, Hedenstierna G (2007) Nitric oxide up-regulates the glucocorticoid receptor and blunts the inflammatory reaction in porcine endotoxin sepsis. Crit Care Med 35:26–32. <a href="https://doi.org/10.1097/01.ccm.0000250319.91575.bb" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/01.ccm.0000250319.91575.bb</a>
  11. de Kruif MD, Lemaire LC, Giebelen IA et al (2007) Prednisolone dose-dependently influences inflammation and coagulation during human endotoxemia. J Immunol 178:1845–1851. <a href="https://doi.org/10.4049/jimmunol.178.3.1845" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4049/jimmunol.178.3.1845</a>
  12. Dragan B, Adamik B, Burzynska M et al (2021) Platelet receptor activity for predicting survival in patients with intracranial bleeding. J Clin Med 10:2205. <a href="https://doi.org/10.3390/jcm10102205" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/jcm10102205</a>
  13. Fei Y, Tang N, Liu H et al (2020) Coagulation dysfunction, a hallmark in COVID-19. Arch Pathol Lab Med 144:1223–1229. <a href="https://doi.org/10.5858/ARPA.2020-0324-SA" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5858/ARPA.2020-0324-SA</a>
  14. Goldstein B, Baldassarre J, Young JN (2012) Effects of inhaled nitric oxide on hemostasis in healthy adults treated with heparin: A randomized, controlled, blinded crossover study. Thromb J 10:1. <a href="https://doi.org/10.1186/1477-9560-10-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/1477-9560-10-1</a>
  15. Göranson SP, Goździk W, Harbut P et al (2014) Organ dysfunction among piglets treated with inhaled nitric oxide and intravenous hydrocortisone during prolonged endotoxin infusion. PLoS One 9:e96594. <a href="https://doi.org/10.1371/journal.pone.0096594" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0096594</a>
  16. Gozdzik W, Zielinski S, Zielinska M et al (2018) Beneficial effects of inhaled nitric oxide with intravenous steroid in an ischemia–reperfusion model involving aortic clamping. Int J Immunopathol Pharmacol 32:394632017751486. https://doi.org/101177/0394632017751486
  17. Gries A, Herr A, Motsch J et al (2000) Randomized, placebocontrolled, blinded and cross-matched study on the antiplatelet effect of inhaled nitric oxide in healthy volunteers. Thromb Haemost 83:309–315. <a href="https://doi.org/10.1055/S-0037-1613804" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1055/S-0037-1613804</a>
  18. Högman M, Frostell C, Arnberg H et al (1993) Bleeding time prolongation and NO inhalation. Lancet 341:1664–1665. <a href="https://doi.org/10.1016/0140-6736(93)90802-n" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/0140-6736(93)90802-n</a>
  19. Högman M, Frostell C, Arnberg H et al (1994) Prolonged bleeding time during nitric oxide inhalation in the rabbit. Acta Physiol Scand 151:125–129. <a href="https://doi.org/10.1111/J.1748-1716.1994.tb09728.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/J.1748-1716.1994.tb09728.x</a>
  20. Kemper DAG, Otsuki DA, Maia DRR et al (2023) Sildenafil in endotoxin-induced pulmonary hypertension: An experimental study. Braz J Anesthesiol 73:446–454. <a href="https://doi.org/10.1016/j.bjane.2021.05.016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.bjane.2021.05.016</a>
  21. Miller C, Miller M, McMullin B et al (2012) A phase I clinical study of inhaled nitric oxide in healthy adults. J Cyst Fibros 11:324–331. <a href="https://doi.org/10.1016/j.jcf.2012.01.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jcf.2012.01.003</a>
  22. Nakamura M, Shimizu Y, Sato Y et al (2007) Toll-like receptor 4 signal transduction inhibitor, M62812, suppresses endothelial cell and leukocyte activation and prevents lethal septic shock in mice. Eur J Pharmacol 569:237–243. <a href="https://doi.org/10.1016/j.ejphar.2007.05.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ejphar.2007.05.013</a>
  23. Nates JL, Cattano D, Chelly JE et al (2015) Study of acute hemocoagulation changes in a porcine endotoxemic shock model using thrombelastography. Transl Res 165:549–557. <a href="https://doi.org/10.1016/j.trsl.2014.09.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.trsl.2014.09.002</a>
  24. National Research Council (2011) Guide for the care and use of laboratory animals, 8th edn. The National Academies Press, Washington DC.
  25. Nilsson KF, Goździk W, Frostell C et al (2018) Organic mononitrites of 1,2-propanediol act as an effective NO-releasing vasodilator in pulmonary hypertension and exhibit no cross-tolerance with nitroglycerin in anesthetized pigs. Drug Des Devel Ther 12:685–694. <a href="https://doi.org/10.2147/DDDT.S149727" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2147/DDDT.S149727</a>
  26. Schöchl H, Solomon C, Schulz A et al (2011) Thromboelastometry (TEM®) findings in disseminated intravascular coagulation in a pig model of endotoxinemia. Mol Med 7:266–272. <a href="https://doi.org/10.2119/molmed.2010.00159" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2119/molmed.2010.00159</a>
  27. Schwarz UR, Walter U, Eigenthaler M (2001) Taming platelets with cyclic nucleotides. Biochem Pharmacol 62:1153–1161. <a href="https://doi.org/10.1016/S0006-2952(01)00760-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0006-2952(01)00760-2</a>
  28. Sundy JS, Wood WA, Watt JL et al (2006) Safety of incremental inhaled lipopolysaccharide challenge in humans. J Endotoxin Res 12:113–119. <a href="https://doi.org/10.1177/09680519060120020701" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1177/09680519060120020701</a>
  29. Velik-Salchner C, Streif W, Innerhofer P et al (2009) Endotoxinemia-induced changes in coagulation, as measured by rotation thrombelastometry technique and conventional laboratory tests: Results of a pilot study on pigs. Blood Coagul Fibrinolysis 20:41–46. <a href="https://doi.org/10.1097/mbc.0b013e32831be9ad" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/mbc.0b013e32831be9ad</a>
  30. Yang X, Cheng X, Tang Y et al (2019) Bacterial endotoxin activates the coagulation cascade through gasdermin D-dependent phosphatidylserine exposure. Immunity 51:983–996.e6. <a href="https://doi.org/10.1016/j.immuni.2019.11.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.immuni.2019.11.005</a>
Language: English
Submitted on: Sep 5, 2023
Accepted on: Apr 18, 2024
Published on: Jun 7, 2024
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2024 Barbara Adamik, Claes Frostell, Barbara Dragan, Urszula Paslawska, Stanislaw Zielinski, Robert Paslawski, Adrian Janiszewski, Marzena Zielinska, Stanislaw Ryniak, Johanna Albert, Waldemar Gozdzik, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.