References
- Cammerer SB, Jimenez C, Jones S, Gros L, Lorente SO, Rodrigues C, Rodrigues JCF, Caldera A, Ruiz Perez LM, da Souza W, Kaiser M, Brun R, Urbina JA, Gonzalez Pacanowska D, Gilbert IH. Quinuclidine derivatives as potential antiparasitics. Antimicrob Agents Chemother 2007;51:4049–61. doi: 10.1128/AAC.00205-07
- Bazina L, Maravić A, Krce L, Soldo B, Odžak R, Popović VB, Aviani I, Primožič I, Šprung M. Discovery of novel quaternary ammonium compounds based on quinuclidine-3-ol as new potential antimicrobial candidates. Eur J Med Chem 2019;163:626–35. doi: 10.1016/j.ejmech.2018.12.023
- Skočibušić M, Odžak R, Štefanić Z, Križić I, Krišto L, Jović O, Hrenar T, Primožič I, Jurašin D. Structure–property relationship of quinuclidinium surfactants—Towards multifunctional biologically active molecules. Colloids Surfaces B Biointerfaces 2016;140:548–59. doi: 10.1016/j.colsurfb.2015.11.023
- Zandona A, Katalinić M, Šinko G, Radman Kastelic A, Primožič I, Kovarik Z. Targeting organophosphorus compounds poisoning by novel quinuclidine-3 oximes: development of butyrylcholinesterase-based bioscavengers. Arch Toxicol 2020;94:3157–71. doi: 10.1007/s00204-020-02811-5
- Fernandes AR, Sanchez-Lopez E, Santini A, Santos T dos, Garcia ML, Silva AM, Souto EB. Mono- and dicationic DABCO/quinuclidine composed nanomaterials for the loading of steroidal drug: 32 factorial design and physicochemical characterization. Nanomaterials 2021;11(10):2758. doi: 10.3390/nano11102758
- Zakharova LY, Pashirova TN, Doktorovova S, Fernandes AR, Sanchez-Lopez E, Silva AM, Souto SB, Souto EB. Cationic surfactants: Self-assembly, structure-activity correlation and their biological applications. Int J Mol Sci 2019;20(22):5534. doi: 10.3390/ijms20225534
- Hamama WS, El-Magid OMA, Zoorob HH. Chemistry of quinuclidines as nitrogen bicyclic bridged-ring structures. J Heterocycl Chem 2006;43:1397–420. doi: 10.1002/jhet.5570430601
- Yakhontov LN. Quinuclidine chemistry. Adv Heterocycl Chem 1970:11:473–523. doi: 10.1016/S0065-2725(08)60778-3
- Odžak R. Biological activity of monoquaternary ammonium compounds based on 3-substituted quinuclidine: A short review. Period Biol 2020;121–122:15–21. doi: 10.18054/pb.v121-122i1-2.10603
- Reiner E, Škrinjarić-Špoljar M, Dunaj S, Simeon-Rudolf V, Primožič I, Tomić S. 3-Hydroxyquinuclidinium derivatives: synthesis of compounds and inhibition of acetylcholinesterase. Chem Biol Interact 1999;119–120:173–81. doi: 10.1016/S0009-2797(99)00026-5
- Katalinić M, Zandona A, Ramić A, Zorbaz T, Primožič I, Kovarik Z. New cinchona oximes evaluated as reactivators of acetylcholinesterase and butyrylcholinesterase inhibited by organophosphorus compounds. Molecules 2017;22(7):1234. doi: 10.3390/molecules22071234
- Matošević A, Radman Kastelic A, Mikelić A, Zandona A, Katalinić M, Primožič I, Bosak A, Hrenar T. Quinuclidine-based carbamates as potential CNS active compounds. Pharmaceutics 2021;13(3):420. doi: 10.3390/pharmaceutics13030420
- Lulić A-M, Marcelić L, Ramić A, Kastelic AR, Zandona A, Maraković N, Primožič I, Katalinić M. Cholinesterase activity modulators: Evaluation of dodecylaminoquinuclidines as inhibitors of human AChE and BChE. Chem Biol Interact 2025;417:111567. doi: 10.1016/j.cbi.2025.111567
- Žunec S, Vadlja D, Ramić A, Zandona A, Maraković N, Brekalo I, Primožič I, Katalinić M. Profiling novel quinuclidine-based derivatives as potential anticholinesterase drugs: Enzyme inhibition and effects on cell viability. Int J Mol Sci 2024;25(1):155. doi: 10.3390/ijms25010155
- Walczak-Nowicka ŁJ, Herbet M. Acetylcholinesterase inhibitors in the treatment of neurodegenerative diseases and the role of acetylcholinesterase in their pathogenesis. Int J Mol Sci 2021;22(17):9290. doi: 10.3390/ijms22179290
- Radman Kastelic A, Odžak R, Pezdirc I, Sović K, Hrenar T, Čipak Gašparović A, Skočibušić M, Primožič I. New and potent quinuclidine-based antimicrobial agents. Molecules 2019;24(14):2675. doi: 10.3390/molecules24142675
- Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem 1996;239:70–6. doi: 10.1006/abio.1996.0292
- Kozics K, Klusová V, Srančíková A, Mučaji P, Slameňová D, Hunáková Ľ, Kusznierewicz B, Horváthová E. Effects of Salvia officinalis and Thymus vulgaris on oxidant-induced DNA damage and antioxidant status in HepG2 cells. Food Chem 2013;141:2198–206. doi: 10.1016/j.foodchem.2013.04.089
- Jalili-Baleh L, Nadri H, Forootanfar H, Küçükkılınç TT, Ayazgök B, Sharifzadeh M, Rahimifard M, Baeeri M, Abdollahi M, Foroumadi A, Khoobi M. Chromone–lipoic acid conjugate: Neuroprotective agent having acceptable butyrylcholinesterase inhibition, antioxidant and copper-chelation activities. DARU J Pharm Sci 2021;29:23–38. doi: 10.1007/s40199-020-00378-1
- Barna L, Walter FR, Harazin A, Bocsik A, Kincses A, Tubak V, Jósvay K, Zvara Á, Campos-Bedolla P, Deli MA. Simvastatin, edaravone and dexamethasone protect against kainate-induced brain endothelial cell damage. Fluids Barriers CNS 2020;17(1):5. doi: 10.1186/s12987-019-0166-1
- Zandona A, Szecskó A, Žunec S, Jovanović IN, Bušić V, Sokač DG, Deli MA, Katalinić M, Veszelka S. Nicotinamide derivatives protect the blood-brain barrier against oxidative stress. Biomed Pharmacother 2025;186:118018. doi: 10.1016/j.biopha.2025.118018
- Žunec S, Kašuba V, Pavičić I, Marjanović AM, Tariba B, Milić M, Kopjar N, Pizent A, Vrdoljak AL, Rozgaj R, Želježić D. Assessment of oxidative stress responses and the cytotoxic and genotoxic potential of the herbicide tembotrione in HepG2 cells. Food Chem Toxicol 2016;94:64–74. doi: 10.1016/j.fct.2016.05.019
- Zandona A, Maraković N, Mišetić P, Madunić J, Miš K, Padovan J, Pirkmajer S, Katalinić M. Activation of (un)regulated cell death as a new perspective for bispyridinium and imidazolium oximes. Arch Toxicol 2021;95:2737–54. doi: 10.1007/s00204-021-03098-w
- Zandona A, Madunić J, Miš K, Maraković N, Dubois-Geoffroy P, Cavaco M, Mišetić P, Padovan J, Castanho M, Jean L, Renard P-Y, Pirkmajer S, Neves V, Katalinić M. Biological response and cell death signaling pathways modulated by tetrahydroisoquinoline-based aldoximes in human cells. Toxicology 2023;494:153588. doi: 10.1016/j.tox.2023.153588
- Emilien G, van Meurs W, Maloteaux JM. The dose-response relationship in Phase I clinical trials and beyond use, meaning, and assessment. Pharmacol Ther 2000;88:33–58. doi: 10.1016/S0163-7258(00)00077-2
- Hartwig A, Arand M, Epe B, Guth S, Jahnke G, Lampen A, Martus H-J, Monien B, Rietjens IMCM, Schmitz-Spanke S, Schriever-Schwemmer G, Steinberg P, Eisenbrand G. Mode of action-based risk assessment of genotoxic carcinogens. Arch Toxicol 2020;94:1787–877. doi: 10.1007/s00204-020-02733-2
- Borgert CJ, Fuentes C, Burgoon LD. Principles of dose-setting in toxicology studies: the importance of kinetics for ensuring human safety. Arch Toxicol 2021;95:3651–64. doi: 10.1007/s00204-021-03155-4
- Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev 2016;2016:1245049. doi: 10.1155/2016/1245049
- Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 2018;217:1915–28. doi: 10.1083/jcb.201708007
- Micheli L, Collodel G, Moretti E, Noto D, Menchiari A, Cerretani D, Crispino S, Signorini C. Redox imbalance induced by docetaxel in the neuroblastoma SH-SY5Y cells: a study of docetaxel-induced neuronal damage. Redox Rep 2021;26:18–28.doi: 10.1080/13510002.2021.1884802
- Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014;2014:360438. doi: 10.1155/2014/360438
- Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol 2019;25:101084. doi: 10.1016/j.redox.2018.101084
- Sharma V, Collins LB, Chen T, Herr N, Takeda S, Sun W, Swenberg JA, Nakamura J. Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations. Oncotarget 2016;7:25377–90. doi: 10.18632/oncotarget.8298
- Giorgio M, Dellino GI, Gambino V, Roda N, Pelicci PG. On the epigenetic role of guanosine oxidation. Redox Biol 2020;29:101398. doi: 10.1016/j.redox.2019.101398
- Miller MA, Zachary JF. Mechanisms and morphology of cellular injury, adaptation, and death. Pathol Basis Vet Dis 2017:2–43.e19. doi: 10.1016/B978-0-323-35775-3.00001-1
- Timbrell JA. Principles of Biochemical Toxicology. 3rd ed. London: CRC Press; 1999. doi: 10.1201/9781003004301
- Kowalczyk P, Sulejczak D, Kleczkowska P, Bukowska-Ośko I, Kucia M, Popiel M, Wietrak E, Kramkowski K, Wrzosek K, Kaczyńska K. Mitochondrial oxidative stress – A causative factor and therapeutic target in many diseases. Int J Mol Sci 2021;22(24):13384. doi: 10.3390/ijms222413384
- Liao X, Han Y, He Y, Liu J, Wang Y. Natural compounds targeting mitochondrial dysfunction: emerging therapeutics for target organ damage in hypertension. Front Pharmacol 2023;14:1209890. doi: 10.3389/fphar.2023.1209890
- Zong Y, Li H, Liao P, Chen L, Pan Y, Zheng Y, Zhang C, Liu D, Zheng M, Gao J. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduct Target Ther 2024;9(1):124. doi: 10.1038/s41392-024-01839-8
- Reddam A, McLarnan S, Kupsco A. Environmental chemical exposures and mitochondrial dysfunction: A review of recent literature. Curr Environ Heal Reports 2022;9:631–49. doi: 10.1007/s40572-022-00371-7