References
- Bogdanov S, Jurendić T, Sieber R, Gallmann P. Honey for nutrition and health: A review. J Am Coll Nutr 2008;27:677–89. doi: 10.1080/07315724.2008.10719745
- Ajila CM, Brar SK, Verma M, Tyagi RD, Godbout S, Valéro JR. Extraction and analysis of polyphenols: Recent trends. Crit Rev Biotechnol 2011;31:227–49. doi: 10.3109/07388551.2010.513677
- Spano N, Piras I, Ciulu M, Floris I, Panzanelli A, Pilo MI, Piu PC, Sanna G. Reversed-phase liquid chromatographic profile of free amino acids in strawberry-tree (Arbutus unedo L.) honey. J AOAC Int 2009;92:S73–84. doi: 10.1093/jaoac/92.4.S73
- Tariba Lovaković B, Lazarus M, Brčić Karačonji I, Jurica K, Živković Semren T, Lušić D, Brajenović N, Pelaić Z, Pizent A. A multi-elemental composition and antioxidant properties of strawberry tree (Arbutus unedo L.) honey from the coastal region of Croatia: Risk-benefit analysis. J Trace Elem Med Biol 2018;45:85–92. doi: 10.1016/j.jtemb.2017.09.022
- Jurič A, Gašić U, Brčić Karačonji, I, Jurica K, Milojković-Opsenica D. The phenolic profile of strawberry tree (Arbutus unedo L.) honey. J Serb Chem Soc 2020;85:1011–9. doi: 10.2298/JSC191217018J
- Rosa A, Tuberoso CIG, Atzeri A, Melis MP, Bifulco E, Dessì MA. Antioxidant profile of strawberry tree honey and its marker homogentisic acid in several models of oxidative stress. Food Chem 2011;129:1045–53. doi: 10.1016/j.foodchem.2011.05.072
- Tuberoso CIG, Boban M, Bifulco E, Budimir D, Pirisi FM. Antioxidant capacity and vasodilatory properties of Mediterranean food: The case of Cannonau wine, myrtle berries liqueur and strawberry-tree honey. Food Chem 2013;140:686–91. doi: 10.1016/j.foodchem.2012.09.071
- Floris I, Pusceddu M, Satta A. The Sardinian bitter honey: from ancient healing use to recent findings. Antioxidants 2021;10(4):506. doi: 10.3390/antiox10040506
- Jurič A. Phenolic profile and in vitro effects of strawberry tree honey (Arbutus unedo L.) on tumour cells and lymphocytes [PhD thesis]. Zagreb: University of Zagreb, Faculty of Food Technology and Biotechnology; 2021.
- Brčić Karačonji I, Jurica K. Development and validation of gas chromatographic-mass spectrometric method for the analysis of homogentisic acid in strawberry tree (Arbutus unedo L.) honey. J AOAC Int 2017;100:889–92. doi: 10.5740/jaoacint.17-0148
- Jurič A, Brčić Karačonji I, Žunec S, Katić A, Gašić U, Milojković Opsenica D, Kopjar N. Protective role of strawberry tree (Arbutus unedo L.) honey against cyto/genotoxic effects induced by ultraviolet B radiation in vitro. J Apic Res 2022. doi: 10.1080/00218839.2022.2047421
- Lazarus M, Tariba Lovaković, B, Sekovanić A, Orct T, Jurič A, Prđun S, Denžić Lugomer M, Bubalo D. Combined approach to studying authenticity markers following spatial, temporal and production practice trends in honey from Croatia. Eur Food Res Technol 2021;247:1511–23. doi: 10.1007/s00217-021-03728-8
- Osmak M, Eljuga D. The characterization of two human cervical carcinoma HeLa sublines resistant to cisplatin. Res Exp Med 1993;193:389–96. doi: 10.1007/bf02576247
- Batra P, Sharma AK. Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech 2013;3:439–59. doi: 10.1007/s13205-013-0117-5
- Mersch-Sundermann V, Knasmüller S, Wu XJ, Darroudi F, Kassie F. Use of a human-derived liver cell line for the detection of cytoprotective, antigenotoxic and cogenotoxic agents. Toxicology 2004;198:329–40. doi: 10.1016/j.tox.2004.02.009
- Sun H, Chow EC, Liu S, Du Y, Pang KS. The Caco-2 cell monolayer: usefulness and limitations. Expert Opin Drug Metab Toxicol 2008;4:395–411. doi: 10.1517/17425255.4.4.395
- Chang CF, Chang YC, Lin JT, Yu CW, Kao YT. Evaluation of inhibitors of intestinal UDP-glucuronosyltransferases 1A8 and 1A10 using raloxifene as a substrate in Caco-2 cells: Studies with four flavonoids of Scutellaria baicalensis. Toxicol In Vitro 2021;72:105087. doi: 10.1016/j.tiv.2021.105087
- Yang SP, Raner GM. Cytochrome P450 expression and activities in human tongue cells and their modulation by green tea extract. Toxicol Appl Pharmacol 2005;202:140–50. doi: 10.1016/j.taap.2004.06.014
- Babich H, Borenfreund E. Cytotoxicity of T-2 toxin and its metabolites determined with the neutral red cell viability assay. Appl Environ Microbiol 1991;57:2101–3. doi: 10.1128/aem.57.7.2101-2103.1991
- Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 1999;27:612–6. doi: 10.1016/s0891-5849(99)00107-0
- Hempel SL, Buettner GR, O‘Malley YQ, Wessels DA, Flaherty DM. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2’.7’-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2’.7’-dichlorodihydrofluorescein diacetate and dihydrorhodamine 123. Free Radic Biol Med 1999;27:146–59. doi: 10.1016/s0891-5849(99)00061-1
- Tuberoso CIG, Bifulco E, Caboni P, Cottiglia F, Cabras P, Floris I. Floral markers of strawberry tree (Arbutus unedo L.) honey. J Agric Food Chem 2010;58:384–9. doi: 10.1021/jf9024147
- Beretta G, Granata P, Ferrero M, Orioli M, Facino RM. Standardization of antioxidant properties of honey by combination of spectrophotometric/fluorometric assays and chemometrics. Anal Chim Acta 2005;533:185–91. doi: 10.1016/j.aca.2004.11.010
- Jurič A, Brčić Karačonji I, Kopjar N. Homogentisic acid, a main phenolic constituent of strawberry tree honey, protects human peripheral blood lymphocytes against irinotecan-induced cytogenetic damage in vitro. Chem Biol Interact 2021;349:109672. doi: 10.1016/j.cbi.2021.109672
- Jaganathan KS, Balaji A, Vellayappan M, Asokan MK, Subramanian AP, John AA, Supriyanto E, Razak SA, Marvibaigi M. A review on antiproliferative and apoptotic activities of natural honey. Anticancer Agents Med Chem 2015;15:48–56. doi: 10.2174/1871520614666140722084747
- Mumtaz PT, Bashir SM, Rather MA, Dar KB, Taban Q. Antiproliferative and apoptotic activities of natural honey. In: Rehman MU, Majid S, editors. Therapeutic applications of honey and its phytochemicals. Singapore: Springer; 2020. p. 345–60.
- Imtara H, Kmail A, Touzani S, Khader M, Hamarshi H, Saad B, Lyoussi B. Chemical analysis and cytotoxic and cytostatic effects of twelve honey samples collected from different regions in Morocco and Palestine. Evid Based Complement Alternat Med 2019;2019:8768210. doi: 10.1155/2019/8768210
- Afrin S, Forbes-Hernandez TY, Gasparrini M, Bompadre S, Quiles JL, Sanna G, Spano N, Giampieri F, Battino M. Strawberry-tree honey induces growth inhibition of human colon cancer cells and increases ROS generation: A comparison with manuka honey. Int J Mol Sci 2017;18:613. doi: 10.3390/ijms18030613
- Afrin S, Giampieri F, Cianciosi D, Pistollato F, Ansary J, Pacetti M, Amici A, Reboredo-Rodríguez P, Simal-Gandara J, Quiles JL, Forbes-Hernández TY, Battino M. Strawberry tree honey as a new potential functional food. Part 1: Strawberry tree honey reduces colon cancer cell proliferation and colony formation ability, inhibits cell cycle and promotes apoptosis by regulating EGFR and MAPKs signaling pathways. J Funct Foods 2019;57:439–52. doi: 10.1016/j.jff.2019.04.035
- Cheng N, Zhao H, Chen S, He Q, Cao W. Jujube honey induces apoptosis in human hepatocellular carcinoma HepG2 cell via DNA damage, p53 expression, and caspase activation. J Food Biochem 2019;43:e12998. doi: 10.1111/jfbc.12998
- Acevedo F, Torres P, Oomah BD, de Alencar SM, Prado Massarioli A, Martín-Venegas R, Albarral-Ávila V, Burgos-Díaz C, Ferrer R, Rubilar M. Volatile and non-volatile/semi-volatile compounds and in vitro bioactive properties of Chilean Ulmo (Eucryphia cordifolia Cav.) honey. Food Res Int 2017;94:20–8. doi: 10.1016/j.foodres.2017.01.021
- Hsu Y-L, Kuo P-L, Lin C-C. Acacetin inhibits the proliferation of Hep G2 by blocking cell cycle progression and inducing apoptosis. Biochem Pharmacol 2004;67:823–9. doi: 10.1016/j.bcp.2003.09.042
- Hsu Y-L, Kuo P-L, Liu C-F, Lin C-C. Acacetin-induced cell cycle arrest and apoptosis in human non-small cell lung cancer A549 cells. Cancer Lett 2004;212:53–60. doi: 10.1016/j.canlet.2004.02.019
- Pan M-H, Lai C-S, Hsu P-C, Wang Y-J. Acacetin induces apoptosis in human gastric carcinoma cells accompanied by activation of caspase cascades and production of reactive oxygen species. Agric Food Chem 2005;53:620–30. doi: 10.1021/jf048430m
- Salimi A, Roudkenar MH, Sadeghi L, Mohseni A, Seydi E, Pirahmadi N, Pourahmad J. Selective anticancer activity of acacetin against chronic lymphocytic leukemia using both in vivo and in vitro methods: key role of oxidative stress and cancerous mitochondria. Nutr Cancer 2016;68:1404–16. doi: 10.1080/01635581.2016.1235717
- Kandhari K, Mishra JPN, Singh RP. Acacetin inhibits cell proliferation, survival, and migration in human breast cancer cells. Int J Pharma Biol Sci 2019;9:443–52. doi: 10.21276/ijpbs.2019.9.1.58
- You BR, Moon HJ, Han YH, Park WH. Gallic acid inhibits the growth of HeLa cervical cancer cells via apoptosis and/or necrosis. Food Chem Toxicol 2010;48:1334–40. doi: 10.1016/j.fct.2010.02.034
- Serrano A, Palacios C, Roy G, Cespón C, Villar ML, Nocito M, González-Porqué P. Derivatives of gallic acid induce apoptosis in tumoral cell lines and inhibit lymphocyte proliferation. Arch Biochem Biophys 1998;350:49–54. doi: 10.1006/abbi.1997.0474
- Wang T, Gong X, Jiang R, Li H, Du W, Kuang G. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell. Am J Transl Res 2016;8:968–80. PMCID: PMC4846940
- Chang W-C, Hsieh C-H, Hsiao M-W, Lin W-C, Hung Y-C, Ye J-C. Caffeic acid induces apoptosis in human cervical cancer cells through the mitochondrial pathway. Taiwan Obstet Gynecol 2010;49:419–24. doi: 10.1016/S1028-4559(10)60092-7
- Kabała-Dzik A, Rzepecka-Stojko A, Kubina R, Jastrzębska-Stojko Ż, Stojko R, Wojtyczka RD, Stojko J. Comparison of two components of propolis: caffeic acid (CA) and caffeic acid phenethyl ester (CAPE) to induce apoptosis and cell cycle arrest of breast cancer cells MDA-MB-231. Molecules 2017;22(9):1554. doi: 10.3390/molecules22091554
- Yin M-C, Lin C-C, Wu H-C, Tsao S-M, Hsu C-K. Apoptotic effects of protocatechuic acid in human breast, lung, liver, cervix, and prostate cancer cells: potential mechanisms of action. J Agric Food Chem 2009;57:6468–73. doi: 10.1021/jf9004466
- Spilioti E, Jaakkola M, Tolonen T, Lipponen M, Virtanen V, Chinou I, Kassi E, Karabournioti S, Moutsatsou P. Phenolic acid composition, antiatherogenic and anticancer potential of honeys derived from various regions in Greece. PLoS One 2014;9(4):e94860. doi: 10.1371/journal.pone.0094860
- Choi J-A, Kim J-Y, Lee J-Y, Kang C-M, Kwon H-J, Yoo Y-D, Kim T-W, Lee Y-S, Lee S-J. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int J Oncol 2001;19:837–44. doi: 10.3892/ijo.19.4.837
- Hashemzaei M, Delarami Far A, Yari A, Heravi RE, Tabrizian K, Taghdisi SM, Sadegh SE, Tsarouhas K, Kouretas D, Tzanakakis G, Nikitovic D, Anisimov NY, Spandidos DA, Tsatsakis AM, Rezaee R. Anticancer and apoptosis inducing effects of quercetin in vitro and in vivo. Oncol Rep 2017;38:819–28. doi: 10.3892/or.2017.5766
- Kumar MAS, Nair M, Hema PS, Mohan J, Santhoshkumar TR. Pinocembrin triggers Bax-dependent mitochondrial apoptosis in colon cancer cells. Mol Carcinog 2007;46:231–41. doi: 10.1002/mc.20272
- Zheng Y, Wang K, Wu Y, Chen Y, Chen X, Hu CW, Hu F. Pinocembrin induces ER stress mediated apoptosis and suppresses autophagy in melanoma cells. Cancer Lett 2018;431:31–42. doi: 10.1016/j.canlet.2018.05.026
- Budhraja A, Gao N, Zhang Z, Son YO, Cheng S, Wang X, Ding S, Hitron A, Chen G, Luo J, Shi X. Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo. Mol Cancer Ther 2012;11:132–42. doi: 10.1158/1535-7163.MCT-11-0343
- Yang J, Pi C, Wang G. Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells. Biomed Pharmacother 2018;103:699–707. doi: 10.1016/j.biopha.2018.04.072
- Woo KJ, Jeong Y-J, Park J-W, Kwon TK. Chrysin-induced apoptosis is mediated through caspase activation and Akt inactivation in U937 leukemia cells. Biochem Biophys Res Commun 2004;325:1215–22. doi: 10.1016/j.bbrc.2004.09.225
- Khoo BY, Chua SL, Balaram P. Apoptotic effects of chrysin in human cancer cell lines. Int J Mol Sci 2010;11:2188–99. doi: 10.3390/ijms11052188
- Samarghandian S, Azimi-Nezhad M, Borji A, Hasanzadeh M, Jabbari F, Farkhondeh T, Samini M. Inhibitory and cytotoxic activities of chrysin on human breast adenocarcinoma cells by induction of apoptosis. Pharmacogn Mag 2016;12(Suppl 4):S436–40. doi: 10.4103/0973-1296.191453
- Ruiz de Almodóvar JM, Núñez MI, McMillan TJ, Olea N, Mort C, Villalobos M, Pedraza V, Steel GG. Initial radiation-induced DNA damage in human tumour cell lines: a correlation with intrinsic cellular radiosensitivity. Br J Cancer 1994;69:457–62. doi: 10.1038/bjc.1994.83
- Dunne AL, Price ME, Mothersill C, McKeown SR, Robson T, Hirst DG. Relationship between clonogenic radiosensitivity, radiation-induced apoptosis and DNA damage/repair in human colon cancer cells. Br J Cancer 2003;89:2277–83. doi: 10.1038/sj.bjc.6601427
- Jariwalla RJ, Gangapurkar B, Nakamura D. Differential sensitivity of various human tumour-derived cell types to apoptosis by organic derivatives of selenium. Br J Nutr 2008;101:182–9. doi: 10.1017/S0007114508998305
- Szumiel I. Intrinsic radiation sensitivity: cellular signaling is the key. Radiat Res 2008;169:249–58. doi: 10.1667/RR1239.1
- Kustiawan PM, Puthong S, Arung ET, Chanchao C. In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines. Asian Pac J Trop Biomed 2014;4:549–56. doi: 10.12980/APJTB.4.2014APJTB-2013-0039
- Lawal AO, Ellis E. Differential sensitivity and responsiveness of three human cell lines HepG2, 1321N1 and HEK 293 to cadmium. J Toxicol Sci 2010;35:465–78. doi: 10.2131/jts.35.465
- Martin-Cordero C, Leon-Gonzalez AJ, Calderon-Montano JM, Burgos-Moron E, Lopez-Lazaro M. Pro-oxidant natural products as anticancer agents. Curr Drug Targets 2012;13:1006–28. doi: 10.2174/138945012802009044
- Carocho M, Ferreira ICFR. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 2013;51:15–25. doi: 10.1016/j.fct.2012.09.021
- Khan ZS, Chatterjee NS, Shabeer TPA, Shaikh S, Banerjee K. Profile of triacylglycerols, phenols, and vitamin E of Manjari Medika grape seed oil and cake: Introducing a novel Indian variety. Eur J Lipid Sci Technol 2020;122(4):1900356. doi: 10.1002/ejlt.201900356
- Eghbaliferiz S, Iranshahi M. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: Updated review of mechanisms and catalyzing metals. Phytother Res 2016;30:1379–91. doi: 10.1002/ptr.5643
- Kang KA, Chae S, Lee KH, Zhang R, Jung MS, You HJ, Kim JS, Hyun JW. Antioxidant effect of homogentisic acid on hydrogen peroxide induced oxidative stress in human lung fibroblast cells. Biotechnol Bioprocess Eng 2005;10:556–63. doi: 10.1007/BF02932294
- Martin JP Jr, Batkoff B. Homogentisic acid autoxidation and oxygen radical generation: implications for the etiology of alkaptonuric arthritis. Free Radic Biol Med 1987;3:241–50. doi: 10.1016/s0891-5849(87)80031-x
- Hiraku Y, Yamasaki M, Kawanishi S. Oxidative DNA damage induced by homogentisic acid, a tyrosine metabolite. FEBS Lett 1998;432:13– 6. doi: 10.1016/s0014-5793(98)00823-0
- Lodovici M, Guglielmi F, Meoni M, Dolara P. Effect of natural phenolic acids on DNA oxidation in vitro. Food Chem Toxicol 2001;39:1205–10. doi: 10.1016/s0278-6915(01)00067-9
- Yen G-C, Duh P-D, Tsai H-L, Huang S-L. Pro-oxidative properties of flavonoids in human lymphocytes. Biosci Biotechnol Biochem 2003;67:1215–22. doi: 10.1271/bbb.67.1215
- Sohi KK, Mittal N, Hundal MK, Khanduja KL. Gallic acid, an antioxidant, exhibits antiapoptotic potential in normal human lymphocytes: A Bcl-2 independent mechanism. J Nutr Sci Vitaminol (Tokyo) 2003;49:221–7. doi: 10.3177/jnsv.49.221
- Bhat SH, Azmi AS, Hadi SM. Prooxidant DNA breakage induced by caffeic acid in human peripheral lymphocytes: involvement of endogenous copper and a putative mechanism for anticancer properties. Toxicol Appl Pharmacol 2007;218:249–55. doi: 10.1016/j.taap.2006.11.022
- Maistro EL, Angeli JPF, Andrade SF, Mantovani MS. In vitro genotoxicity assessment of caffeic, cinnamic and ferulic acids. Genet Mol Res 2011;10:1130–40. doi: 10.4238/vol10-2gmr1278
- Chedea VS, Choueiri L, Jisaka M, Kefalas P. o-Quinone involvement in the prooxidant tendency of a mixture of quercetin and caffeic acid. Food Chem 2012;135:1999–2004. doi: 10.1016/j.foodchem.2012.06.094
- Metodiewa D, Jaiswal AK, Cenas N, Dickancaité E, Segura-Aguilar J. Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic Biol Med 1999;26:107–16. doi: 10.1016/s0891-5849(98)00167-1
- Lee PY, Costumbrado J, Hsu C-Y, Kim YH. Agarose gel electrophoresis for the separation of DNA fragments. J Vis Exp 2012;20(62):3923. doi: 10.3791/3923
- Yang B, Chen F, Hua Y, Huang S-S, Lin S, Wen L, Jiang Y. Prooxidant activities of quercetin, p-courmaric acid and their derivatives analysed by quantitative structure-activity relationship. Food Chem 2012;131:508–12. doi: 10.1016/j.foodchem.2011.09.014
- Truong DH, Nhung NTA, Dao DQ. Iron ions chelation-based antioxidant potential vs. pro-oxidant risk of ferulic acid: A DFT study in aqueous phase. Comput Theor Chem 2020;1185:112905. doi: 10.1016/j.comptc.2020.112905
- Miyoshi N, Naniwa K, Yamada T, Osawa T, Nakamura Y. Dietary flavonoid apigenin is a potential inducer of intracellular oxidative stress: the role in the interruptive apoptotic signal. Arch Biochem Biophys 2007;466:274–82. doi: 10.1016/j.abb.2007.07.026