References
- Taevernier L, Bracke N, Veryser L, Wynendaele E, Gevaert B, Peremans K, De Spiegeleer B. Blood-brain barrier transport kinetics of the cyclic depsipeptide mycotoxins beauvericin and enniatins. Toxicol Lett 2016;258:175–84. doi: 10.1016/j.toxlet.2016.06.1741
- Sava V, Reunova O, Velasquez A, Harbison R, Sánchez-Ramos J. Acute neurotoxic effects of the fungal metabolite ochratoxin-A. Neurotoxicology 2006;27:82–92. doi: 10.1016/j.neuro.2005.07.004
- Ren ZH, Deng HD, Deng YT, Deng JL, Zuo ZC, Yu SM, Shen LH, Cui HM, Xu ZW, Hu YC. Effect of the Fusarium toxins, zearalenone and deoxynivalenol, on the mouse brain. Environ Toxicol Pharma 2016;46:62–70. doi: 10.1016/j.etap.2016.06.028
- Islam MT, Mishra SK, Tripathi S, de Alencar MVOB, Sousa JMDC, Rolim HML, Graças M, Medeiros F, Ferreira PMP, Rouf R, Uddin SJ, Mubarak MS, de Carvalho Melo-Cavalcante AA. Mycotoxin-assisted mitochondrial dysfunction and cytotoxicity: Unexploited tools against proliferative disorders. IUBMB life 2018;70:1084–92. doi: 10.1002/iub.1932
- Escrivá L, Jennen D, Caiment F, Manyes L. Transcriptomic study of the toxic mechanism triggered by beauvericin in Jurkat cells. Toxicol lett 2018;284:213–21. doi: 10.1016/j.toxlet.2017.11.035
- Niaz K, Shah SZA, Khan F, Bule M. Ochratoxin A–induced genotoxic and epigenetic mechanisms lead to Alzheimer disease: its modulation with strategies. Environ Sci Pollut 2020;27:44673–700. doi: 10.1007/s11356-020-08991-y
- Luciani P, Deledda C, Rosati F, Benvenuti S, Cellai I, Dichiara F, Morello M, Vannelli GB, Danza G, Serio M, Peri A. Seladin-1 is a fundamental mediator of the neuroprotective effects of estrogen in human neuroblast long-term cell cultures. Endocrinology 2008;149:4256–66. doi: 10.1210/en.2007-1795
- Juan-García A, Montesano D, Mañes J, Juan C. Cytoprotective effects of carotenoids-rich extract from Lycium barbarum L. on the beauvericin-induced cytotoxicity on Caco-2 cells. Food Chem Toxicol 2019;133:110798. doi: 10.1016/j.fct.2019.110798
- Montesano D, Juan-García A, Mañes J, Juan C. Chemoprotective effect of carotenoids from Lycium barbarum L. on SH-SY5Y neuroblastoma cells treated with beauvericin. Food Chem Toxicol 2020;141:111414. doi: 10.1016/j.fct.2020.111414
- Alonso-Garrido M, Tedeschi P, Maietti A, Font G, Marchetti N, Manyes L. Mitochondrial transcriptional study of the effect of aflatoxins, enniatins and carotenoids in vitro in a blood brain barrier model. Food Chem Toxicol 2020;137:111077. doi: 10.1016/j.fct.2019.111077
- McGill CR, Green NR, Meadows MC, Gropper SS. Beta-carotene supplementation decreases leukocyte superoxide dismutase activity and serum glutathione peroxidase concentration in humans. J Nutr Biochem 2003;14:656–62. doi: 10.1016/j.jnutbio.2003.08.003
- Zhang P, Omaye ST. β-Carotene: Interactions with α-tocopherol and ascorbic acid in microsomal lipid peroxidation. J Nutr Biochem 2001;12:38–45. doi: 10.1016/S0955-2863(00)00143-1
- Kim JH, Hwang J, Shim E, Chung EJ, Jang SH, Koh SB. Association of serum carotenoid, retinol, and tocopherol concentrations with the progression of Parkinson’s Disease. Nutr Res Pract 2017;11:114–20. doi: 10.4162/nrp.2017.11.2.114
- Mullan K, Williams MA, Cardwell CR, McGuinness B, Passmore P, Silvestri G, Woodside JV, McKay GJ. Serum concentrations of vitamin E and carotenoids are altered in Alzheimer’s disease: A case-control study. Alzheimers Dement 2017;3:432–9. doi: 10.1016/j.trci.2017.06.006
- Deng P, Li X, Petriello MC, Wang C, Morris AJ, Hennig B. Application of metabolomics to characterize environmental pollutant toxicity and disease risks. Rev Environ Health 2019;34:251–9. doi: 10.1515/reveh-2019-0030
- Bergantin C, Maietti A, Tedeschi P, Font G, Manyes L, Marchetti N. HPLC-UV/Vis-APCI-MS/MS determination of major carotenoids and their bioaccessibility from “Delica” (Cucurbita maxima) and “Violina” (Cucurbita moschata) pumpkins as food traceability markers. Molecules 2018;23:2791. doi: 10.3390/molecules23112791
- Stuerenburg HJ, Ganzer S, Muller-Thomsen T. Plasma betacarotene in Alzheimer’s disease. Association with cerebrospinal fluid beta-amyloid 1-40, (Abeta40), beta-amyloid 1-42 (Abeta42) and total Tau. Neuroendocrinol Lett 2005;26:696–8. PMID: 16380679
- Yuan J-F, Ji H-H, Qiu Z-J, Wang D-H. ECV304/C6 coculture model of the BBB coupled with LC–MS analysis for drug screening from Rhubarb extract. Med Chem Res 2016;25:1935–44. doi: 10.1007/s00044-016-1618-7
- Blackwell A, Aja S, Zhou W, Graham D, Ronnett GV. Multi-Omics Compatible Protocols for Preparation and Extraction of Biological Samples for Wide Coverage in Untargeted Metabolomics Experiments. [displayed 24 August 2021]. Available at https://www.agilent.com/cs/library/technicaloverviews/Public/5991-3528EN.pdf
- Montenegro-Burke JR, Guijas C, Siuzdak G. Metlin: A tandem mass spectral library of standards. In: Li S, editor. Computational methods and data analysis for metabolomics. Springer US, 2020. p. 149–63.
- Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, Sidiropoulos K, Cook J, Gillespie M, Haw R, Loney F, May B, Milacic M, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Weiser J, Wu G, Stein L, Hermjakob H, D’Eustachio P. The reactome pathway knowledgebase. Nucleic Acids Res 2020;48:D498–503. doi: 10.1093/nar/gkz1031
- Hoggatt J, Pelus LM. Eicosanoid regulation of hematopoiesis and hematopoietic stem and progenitor trafficking. Leukemia 2010;24:1993–2002. doi: 10.1038/leu.2010.216
- Alhouayek M, Masquelier J, Cani PD, Lambert DM, Muccioli GG. Implication of the anti-inflammatory bioactive lipid prostaglandin D2-glycerol ester in the control of macrophage activation and inflammation by ABHD6. PNAS 2013;110:17558–63. doi: 10.1073/pnas.1314017110
- Tallima H, El Ridi R. Arachidonic acid: Physiological roles and potential health benefits – A review. J Advanced Res 2018;11:33–41. doi: 10.1016/j.jare.2017.11.004
- Hanna VS, Hafez EAA. Synopsis of arachidonic acid metabolism: A review. J Adv Res 2018;11:23–32. doi: 10.1016/j.jare.2018.03.005
- Sarker MH, Hu D-E, Fraser PA. Acute effects of bradykinin on cerebral microvascular permeability in the anaesthetized rat. J Physiology 2000 ; 528:177–87. doi : 10.1111/j.1469-7793.2000.00177.x
- Easton AS, Abbott NJ. Bradykinin increases permeability by calcium and 5-lipoxygenase in the ECV304/C6 cell culture model of the blood-brain barrier. Brain Res 2002;953:157–69. doi: 10.1016/S0006-8993(02)03281-X
- Juan-García A, Carbone S, Ben-Mahmoud M, Sagratini G, Mañes J. Beauvericin and ochratoxin A mycotoxins individually and combined in HepG2 cells alter lipid peroxidation, levels of reactive oxygen species and glutathione. Food Chem Toxicol 2020;139:111247. doi: 10.1016/j.fct.2020.111247
- Xiao Y, Xu S, Zhao S, Liu K, Lu Z, Hou Z. Protective effects of selenium against zearalenone-induced apoptosis in chicken spleen lymphocyte via an endoplasmic reticulum stress signaling pathway. Cell Stress Chaperones 2019;24:77–89. doi: 10.1007/s12192-018-0943-9
- Guest J, Grant R. Carotenoids and neurobiological health. Adv Neurobiol 2016;12:199–228. doi: 10.1007/978-3-31928383-8_11
- Jucá MM, Cysne Filho FMS, de Almeida JC, Mesquita DDS, Barriga JRM, Dias KCF, Barbosa TM, Vasconcelos LC, Leal LKAM, Ribeiro JE, Vasconcelos SMM. Flavonoids: biological activities and therapeutic potential. Nat Prod Res 2020;34:692–705. doi: 10.1080/14786419.2018.1493588
- Mallebrera B, Maietti A, Tedeschi P, Font G, Ruiz MJ, Brandolini V. Antioxidant capacity of trans-resveratrol dietary supplements alone or combined with the mycotoxin beauvericin. Food Chem Toxicol 2017;105:315–8. doi: 10.1016/j.fct.2017.04.027
- Subagio A, Morita N. Instability of carotenoids is a reason for their promotion on lipid oxidation. Food Res Int 2001;34:183–8. doi: 10.1016/S0963-9969(00)00150-2
- Mallebrera B, Prosperini A, Font G, Ruiz, MJ. In vitro mechanisms of Beauvericin toxicity: A review. Food Chem Toxicol 2018;111:537–45. doi: 10.1016/j.fct.2017.11.019