References
- Bean JA, Isacson P, Hausler WJJr, Kohler J. Drinking water and cancer incidence in Iowa. 1. Trends and incidence by source of drinking water and size of municipality. Am J Epidemiol 1982;116:912–23. doi: 10.1093/oxfordjournals.aje.a113493
- Petersen NJ, Samuels LD, Lucas HF, Abrahamset SP. An epidemiologic approach to low-level radium 226 exposure. Public Health Rep 1966;81:805–14. doi: 10.2307/4592839
- Lyman GH, Lyman CG, Johnson W. Association of leukemia with radium groundwater contamination. JAMA 1985;254:621–6. doi: 10.1001/jama.1985.03360050059026
- National Research Council (US) Committee on Risk Assessment of Exposure to Radon in Drinking Water. Risk Assessment of Radon in Drinking Water. Washington (DC): National Academy Press; 1999.
- Todorović N, Nikolov J, Petrović Pantić T, Kovačević J, Stojković I, Krmar M. Radon in water - hydrogeology and health implication. In: Stacks AM, editor. Radon, geology, environmental impact, and toxicity concerns. Nova Science Publishers; 2015. p. 163–88.
- Forte M, Abbate G, Badalamenti P, Costantino S, Lunesu D, Rusconi R. Validation of a method for measuring 226Ra in drinking waters by LSC. Appl Radiat Isot 2015;103:143–50. doi: 10.1016/j.apradiso.2015.05.022
- Bhade SPD, Reddy PJ, Anilkumar S, Singhal RK, Rao DD. Calibration and optimization of alpha-beta separation procedures for determination of radium/radon in single- and two-phase liquid scintillation systems. J Radioanal Nucl Chem 2018;315:13–20. doi: 10.1007/s10967-017-5643-x
- Alomari AH, Saleh MA, Hashim S, Alsayaheen A, Abdeldin I. Activity concentrations of 226Ra, 228Ra, 222Rn and their health impact in the groundwater of Jordan. J Radioanal Nucl Chem 2019;322:305–18. doi: 10.1007/s10967-019-06686-4
- Hou X. Liquid scintillation counting for determination of radionuclides in environmental and nuclear application. J Radioanal Nucl Chem 2018;318:1597–628. doi: 10.1007/s10967-018-6258-6
- Al-Hamarneh IF, Almasoud FI. A comparative study of different radiometric methodologies for the determination of 226Ra in water. Nucl Eng Technol 2018;50:159–64. doi: 10.1016/j.net.2017.10.009
- Lopes I, Vesterbacka P, Kelleher K. Comparison of radon (Rn-222) concentration in Portugal and Finland underground waters. J Radioanal Nucl Chem 2017;311:1867–73. doi: 10.1007/s10967-017-5166-5
- Vinson DS, Vengosh A, Hirschfeld D, Dwyer GS. Relationships between radium and radon occurrence and hydrochemistry in fresh groundwater from fractured crystalline rocks, North Carolina (USA). Chem Geol 2009;260:159–71. doi: 10.1016/j.chemgeo.2008.10.022
- Hahn PB, Pia SH. Method 913.0: Determination of Radon in Drinking Water by Liquid Scintillation Counting (Draft). Las Vegas (Nevada): Environmental Monitoring Systems Laboratory, U.S. Environmental Protection Agency; 1991.
- Salonen L, Hukkanen H. Advantages of low-background liquid scintillation alpha-spectrometry and pulse shape analysis in measuring 222Rn, uranium and 226Ra in groundwater samples. J Radioanal Nucl Chem 1997;226:67–74. doi: 10.1007/BF02063626
- Salonen L. Comparison of two direct LS methods for measuring 222Rn in drinking water using α/β liquid scintillation spectrometry. Appl Radiat Isot 2010;68:1970–9. doi: 10.1016/j.apradiso.2010.03.003
- Manić G, Petrović S, Manić V, Popović D, Todorović D. Radon concentrations in a spa in Serbia. Environ Int 2006;32:533–7. doi: 10.1016/j.envint.2005.12.002
- Žunić ZS, Kobal I, Vaupotič J, Kozak K, Mazur J, Birovljev A, Janik M, Čeliković I, Ujić P, Demajo A, Krstić G, Jakupi B, Quarto M, Bochicchio F. High natural radiation exposure in radon spa areas: a detailed field investigation in Niška Banja (Balkan region). J Environ Radioactiv 2006;89:249–60. doi: 10.1016/j.jenvrad.2006.05.010
- Nikolov J, Todorović N, Petrović Pantić T, Forkapić S, Mrdja D, Bikit I, Krmar M, Vesković M. Exposure to radon in the radon spa Niška Banja, Serbia. Radiat Meas 2012;47:443–50. doi: 10.1016/j.radmeas.2012.04.006
- Stojković I, Tenjović B, Nikolov J, Vesković M, Mrđa D, Todorović N. Improvement of measuring methods and instrumentation concerning 222Rn determination in drinking waters - RAD7 and LSC technique comparison. Appl Radiat Isot 2015;98:117–24. doi: 10.1016/j.apradiso.2015.01.028
- Todorović N, Jakonić I, Nikolov J, Hansman J, Vesković M. Establishment of a method for 222Rn determination by low-level liquid scintillation counter. Radiat Prot Dosim 2014;162:110–4. doi: 10.1093/rpd/ncu240
- Nikolov J, Stojković I, Todorović N, Tenjović B, Vuković S, Knežević J. Evaluation of different LSC methods for 222Rn determination in water. Appl Radiat Isot 2018;142:56–63. doi: 10.1016/j.apradiso.2018.09.013
- Vitz E. Toward a standard method for determining waterborne radon. Health Phys 1991;60:817–29. doi: 10.1097/00004032199106000-00007
- Kitto ME. Characteristics of liquid scintillation analysis of radon in water. J Radioanal Nucl Chem 1994;185:91–9. doi: 10.1007/BF02042955
- Todorović N, Nikolov J, Forkapić S, Bikit I, Mrđa D, Krmar M, Vesković M. Public exposure to radon in drinking water in Serbia. Appl Radiat Isot 2012;70:543–9. doi: 10.1016/j.apradiso.2011.11.045
- PerkinElmer Life Sciences. Instrument manual – QuantulusTM 1220 ultra low level liquid scintillation spectrometer [displayed 14 September 2021]. Available at: https://www.perkinelmer.com/content/manuals/gde_quantulusinstrumentmanual.pdf
- Stojković I, Todorović N, Nikolov J, Tenjović B. PSA discriminator influence on 222Rn efficiency detection in waters by liquid scintillation counting. Appl Radiat Isot 2016;112:80–8. doi: 10.1016/j.apradiso.2016.03.020
- Salonen L. Calibration of the direct LSC method for radon in drinking water: interference from 210Pb and its progenies accumulated in 226Ra standard solution. Appl Radiat Isot 2010;68:131–8. doi: 10.1016/j.apradiso.2009.08.006
- Zouridakis N, Ochsenkuhn KM, Savidou A. Determination of uranium and radon in potable water samples. J Environ Radioactiv 2002;61:225–32. doi: 10.1016/s0265-931x(01)00125-4
- Galan Lopez M, Martin Sanchez A, Gómez Escobar V. Application of ultra-low level liquid scintillation to the determination of 222Rn in groundwater. J Radioanal Nucl C h e m 2 0 0 4 ; 2 6 1 : 6 3 1 – 6. d o i : 10.1023/B:JRNC.0000037106.78880.d0
- Council Directive 2013/51/EURATOM of 22 October 2013 laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption [displayed 1 September 2021]. Available at https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013L0051&from=EN
- Kinner NE, Malley JrJP, Clement JA, Quern PA, Schell GS, Lessard CE. Effects of sampling technique, storage, cocktails, sources of variation, and extraction on the liquid scintillation technique for radon in water. Environ Sci Technol 1991;25:1165–71. doi: 10.1021/es00018a023
- Kaihola L, Oikari T, Suontausta J. Ultra-sensitive alpha particle detection in the presence of high beta activity by low-level liquid scintillation spectrometry. In: Cook GT, Harkness DD, MacKenzie AB, Miller BF, Scott EM, editors. Advances in Liquid Scintillation Spectrometry 1994. Tucson (AZ): Radiocarbon Publishers; 1996. p. 301–5.