References
- Badosa, E., Trias, R., Parés, D., Pla, M., & Montesinos, E. (2008). Microbiological quality of fresh fruit and vegetable products in Catalonia (Spain) using normalised plate‐counting methods and real time polymerase chain reaction (QPCR). Journal of the Science of Food and Agriculture, 88(4), 605–611. https://doi.org/10.1002/jsfa.3124
- Barbosa, L. N., Rall, V. L. M., Fernandes, A. A. H., Ushimaru, P. I., Da Silva Probst, I., & Fernandes, A. (2009). Essential Oils Against Foodborne Pathogens and Spoilage Bacteria in Minced Meat. Foodborne Pathogens and Disease, 6(6), 725–728. https://doi.org/10.1089/fpd.2009.0282
- Betts, G. (2006). Other spoilage bacteria. V C. D. Blackburn (Ed.), Food spoilage microorganisms. CRC Press. https://doi.org/10.1533/9781845691417.5.668
- Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods – a review. International Journal of Food Microbiology, 94(3), 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
- Critzer, F. J., & Doyle, M. P. (2010). Microbial ecology of foodborne pathogens associated with produce. Current Opinion in Biotechnology, 21(2), 125–130. https://doi.org/10.1016/j.copbio.2010.01.006
- De Corato, U. (2020). Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Critical Reviews in Food Science and Nutrition, 60(6), 940–975. https://doi.org/10.1080/10408398.2018.1553025
- Fatica, M. K., & Schneider, K. R. (2011). Salmonella and produce: Survival in the plant environment and implications in food safety. Virulence, 2(6), 573–579. https://doi.org/10.4161/viru.2.6.17880
- Flores, G. E., Bates, S. T., Caporaso, J. G., Lauber, C. L., Leff, J. W., Knight, R., & Fierer, N. (2013). Diversity, distribution and sources of bacteria in residential kitchens. Environmental Microbiology, 15(2), 588–596. https://doi.org/10.1111/1462-2920.12036
- Gachkar, L., Yadegari, D., Rezaei, M., Taghizadeh, M., Astaneh, S., & Rasooli, I. (2007). Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chemistry, 102(3), 898–904. https://doi.org/10.1016/j.foodchem.2006.06.035
- Goodburn, C., & Wallace, C. A. (2013). The microbiological efficacy of decontamination methodologies for fresh produce: A review. Food Control, 32(2), 418–427. https://doi.org/10.1016/j.foodcont.2012.12.012
- Gyawali, R., & Ibrahim, S. A. (2014). Natural products as antimicrobial agents. Food Control, 46, 412–429. https://doi.org/10.1016/j.foodcont.2014.05.047
- Holden, N., Pritchard, L., & Toth, I. (2009). Colonization outwith the colon: Plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMS Microbiology Reviews, 33(4), 689–703. https://doi.org/10.1111/j.1574-6976.2008.00153.x
- Chan, K. (2013). Faculty Opinions recommendation of Environmental biodiversity, human microbiota, and allergy are interrelated. (s. 793472078). https://doi.org/10.3410/f.716997802.793472078
- Chaudhary, A. K., Ahmad, S., & Mazumder, A. (2012). Study of antibacterial and antifungal activity of traditional Cedrus deodara and Pinus roxburghii Sarg. Tang [Humanitas Medicine], 2(4), 37.1-37.4. http://dx.doi.org/10.5667/tang.2012.0036
- Chaudhary, A., Sharma, P., Nadda, G., Tewary, D. K., & Singh, B. (2011). Chemical Composition and Larvicidal Activities of the Himalayan Cedar, Cedrus deodara Essential Oil and Its Fractions Against the Diamondback Moth, Plutella xylostella. Journal of Insect Science, 11(157), 1–10. https://doi.org/10.1673/031.011.15701
- Juneja, V. (2002). Sous-Vide Processed Foods: Safety Hazards and Control of Microbial Risks. V V. Juneja, G. Sapers, & J. Novak (Ed.), Microbial Safety of Minimally Processed Foods. CRC Press. https://doi.org/10.1201/9781420031850
- Kačániová, M., Galovičová, L., Valková, V., Ďuranová, H., Borotová, P., Štefániková, J., Vukovic, N. L., Vukic, M., Kunová, S., Felsöciová, S., Miklášová, K., Savitskaya, T., & Grinshpan, D. (2021). Chemical composition and biological activity of Salvia officinalis essential oil. Acta Horticulturae et Regiotecturae, 24(2), 81–88. https://doi.org/10.2478/ahr-2021-0028
- Kačániová, M., Galovičová, L., Valková, V., Ďuranová, H., Štefániková, J., Čmiková, N., Vukic, M., Vukovic, N. L., & Kowalczewski, P. Ł. (2022). Chemical Composition, Antioxidant, In Vitro and In Situ Antimicrobial, Antibiofilm, and Anti-Insect Activity of Cedar atlantica Essential Oil. Plants, 11(3), 358. https://doi.org/10.3390/plants11030358
- Kačániová, M., Terentjeva, M., Galovičová, L., Ivanišová, E., Štefániková, J., Valková, V., Borotová, P., Kowalczewski, P. Ł., Kunová, S., Felšöciová, S., Tvrdá, E., Žiarovská, J., Benda Prokeinová, R., & Vukovic, N. (2020). Biological Activity and Antibiofilm Molecular Profile of Citrus aurantium Essential Oil and Its Application in a Food Model. Molecules, 25(17), 3956. https://doi.org/10.3390/molecules25173956
- Kačániová, M., Vukovic, N. L., Čmiková, N., Galovičová, L., Schwarzová, M., Šimora, V., Kowalczewski, P. Ł., Kluz, M. I., Puchalski, C., Bakay, L., & Vukic, M. D. (2023). Salvia sclarea Essential Oil Chemical Composition and Biological Activities. International Journal of Molecular Sciences, 24(6), 5179. https://doi.org/10.3390/ijms24065179
- Kumar, K., Askari, F., Sahu, M., & Kaur, R. (2019). Candida glabrata: A Lot More Than Meets the Eye. Microorganisms, 7(2), 39. https://doi.org/10.3390/microorganisms7020039
- Majid, A. M., Aamina Azim, A. A., Wajid Hussain, W. H., Zaffar Iqbal, Z. I., Hafsa Hameed, H. H., Javeria Malik, J. M., Ajmal Khan, A. K., Kiran Ismail, K. I., & Mujaddad-ur-Rehman, M.-R. (2015). Antibacterial effects of Cedrus deodara oil against pathogenic bacterial strains in-vitro approaches.
- Martin-Diana, A. B., Rico, D., Frias, J., Mulcahy, J., Henehan, G. T. M., & Barry-Ryan, C. (2006). Whey permeate as a biopreservative for shelf life maintenance of fresh-cut vegetables. Innovative Food Science & Emerging Technologies, 7(1–2), 112–123. https://doi.org/10.1016/j.ifset.2005.08.002
- Oliveira, M., Usall, J., Viñas, I., Anguera, M., Gatius, F., & Abadias, M. (2010). Microbiological quality of fresh lettuce from organic and conventional production. Food Microbiology, 27(5), 679–684. https://doi.org/10.1016/j.fm.2010.03.008
- Oussalah, M., Caillet, S., Saucier, L., & Lacroix, M. (2006). Antimicrobial effects of selected plant essential oils on the growth of a Pseudomonas putida strain isolated from meat. Meat Science, 73(2), 236–244. https://doi.org/10.1016/j.meatsci.2005.11.019
- Patrignani, F., Siroli, L., Serrazanetti, D. I., Gardini, F., & Lanciotti, R. (2015). Innovative strategies based on the use of essential oils and their components to improve safety, shelf-life and quality of minimally processed fruits and vegetables. Trends in Food Science & Technology, 46(2), 311–319. https://doi.org/10.1016/j.tifs.2015.03.009
- Ponce, A. G., Roura, S. I., del Valle, C. E., & Moreira, M. R. (2008). Antimicrobial and antioxidant activities of edible coatings enriched with natural plant extracts: In vitro and in vivo studies. Postharvest Biology and Technology, 49(2), 294–300. https://doi.org/10.1016/j.postharvbio.2008.02.013
- Rastogi, G., Sbodio, A., Tech, J. J., Suslow, T. V., Coaker, G. L., & Leveau, J. H. J. (2012). Leaf microbiota in an agroecosystem: Spatiotemporal variation in bacterial community composition on field-grown lettuce. The ISME Journal, 6(10), 1812–1822. https://doi.org/10.1038/ismej.2012.32
- Rhafouri, R., Strani, B., Zair, T., Ghanmi, M., Aafi, A., El Omari, M., & Bentayeb, A. (2014). Chemical composition, antibacterial and antifungal activities of the Cedrus atlantica (Endl.) Manettiex Carrière seeds essential oil. Mediterranean Journal of Chemistry, 3(5), 1034–1043. https://doi.org/10.13171/mjc.3.5.2014.10.14.23.44
- Rizzello, C. G., Losito, I., Gobbetti, M., Carbonara, T., De Bari, M. D., & Zambonin, P. G. (2005). Antibacterial Activities of Peptides from the Water-Soluble Extracts of Italian Cheese Varieties. Journal of Dairy Science, 88(7), 2348–2360. https://doi.org/10.3168/jds.S0022-0302(05)72913-1
- Saab, A. M., Gambari, R., Sacchetti, G., Guerrini, A., Lampronti, I., Tacchini, M., El Samrani, A., Medawar, S., Makhlouf, H., Tannoury, M., Abboud, J., Diab-Assaf, M., Kijjoa, A., Tundis, R., Aoun, J., & Efferth, T. (2018). Phytochemical and pharmacological properties of essential oils from Cedrus species. Natural Product Research, 32(12), 1415–1427. https://doi.org/10.1080/14786419.2017.1346648
- Saleem, M. (2014). Natural Products as Antimicrobial Agents – an Update. V D. A. Phoenix, F. Harris, & S. R. Dennison (Ed.), Novel Antimicrobial Agents and Strategies (1st ed., pp. 219–294). Wiley. https://doi.org/10.1002/9783527676132.ch9
- Santos, J. S., & Oliveira, M. B. P. P. (2012). Revisão: Alimentos frescos minimamente processados embalados em atmosfera modificada. Brazilian Journal of Food Technology, 15(1), 1–14. https://doi.org/10.1590/S1981-67232012000100001
- Satrani, B., Aberchane, M., Farah, A., Chaouch, A., & Talbi, M. (2006). Composition chimique et activité antimicrobienne des huiles essentielles extraites par hydrodistillation fractionnée du bois de Cedrus atlantica Manetti. Acta Botanica Gallica, 153(1), 97–104. https://doi.org/10.1080/12538078.2006.10515524
- Song, F., & Feng, Y. (Ed.). (2023). Antimicrobial Natural Products. MDPI. https://doi.org/10.3390/books978-3-0365-9106-3
- Souza, E. L., Stamford, T. L. M., Lima, E. O., & Trajano, V. N. (2007). Effectiveness of Origanum vulgare L. essential oil to inhibit the growth of food spoiling yeasts. Food Control, 18(5), 409–413. https://doi.org/10.1016/j.foodcont.2005.11.008
- Tian, J., Ban, X., Zeng, H., Huang, B., He, J., & Wang, Y. (2011). In vitro and in vivo activity of essential oil from dill (Anethum graveolens L.) against fungal spoilage of cherry tomatoes. Food Control, 22(12), 1992–1999. https://doi.org/10.1016/j.foodcont.2011.05.018
- Zeng, W., Zhang, Z., Gao, H., Jia, L., & He, Q. (2012). Chemical Composition, Antioxidant, and Antimicrobial Activities of Essential Oil from Pine Needle (Cedrus deodara). Journal of Food Science, 77(7). https://doi.org/10.1111/j.1750-3841.2012.02767.x