References
- Ingenbleek Y, Kimura H. Nutritional essentiality of sulfur in health and disease. Nutr Rev. 2013; 71: 413–32.
- Chen YJ, Juang KJ, Nuevo M, Jimenez-Escobar A, Munoz Caro G, Qiu JM, Chu CC, Yih TS, Wu CYR, Fung HS, et al. Formation of s-bearing species by VUV/EUV irradiation of H2S-containing ice mixtures: photon energy and carbon source effects. ApJ. 2015; 798.
- Doleman JF, Grisar K, Van Liedekerke L, Saha S, Roe M, Tapp HS, Mithen RF. The contribution of alliaceous and cruciferous vegetables to dietary sulphur intake. Food Chem. 2017; 234: 38–45.
- Stipanuk MH. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr. 2014; 24: 539–77.
- Zhang HF, Klein Geltink RI, Parker SJ, Sorensen PH. Transsulfuration, minor player or crucial for cysteine homeostasis in cancer. Trends Cell Biol. 2022; 32: 800–14.
- Cho ES, Johnson N, Snider BC. Tissue glutathione as a cyst(e)ine reservoir during cystine depletion in growing rats. J Nutr. 1984; 114: 1853–62.
- Paul BD, Sbodio JI, Snyder SH. Cysteine metabolism in neuronal redox homeostasis. Trends Pharmacol Sci. 2018; 39: 513–24.
- Turell L, Zeida A, Trujillo M. Mechanisms and consequences of protein cysteine oxidation: the role of the initial short-lived intermediates. Essays Biochem. 2020; 64: 55–66.
- Toohey JI. The conversion of H(2)S to sulfane sulfur. Nat Rev Mol Cell Biol. 2012; 13: 803–p.803.
- Zhao Q, Ma J, Xie F, Wang Y, Zhang Y, Li H, Sun Y, Wang L, Guo M, Han K. Recent advances in predicting protein S-nitrosylation sites. Biomed Res Int. 2021; 5542224.
- Kimura H. Signaling by hydrogen sulfide (H2S) and polysulfides (H2Sn) in the central nervous system. Neurochem Int. 2019; 126: 118–25.
- Kuschman HP, Palczewski MB, Thomas DD. Nitric oxide and hydrogen sulfide: Sibling rivalry in the family of epigenetic regulators. Free Radic Biol Med. 2021; 170: 34–43.
- Moustafa A, Habara Y. Cross talk between polysulfide and nitric oxide in rat peritoneal mast cells. Am J Physiol Cell Physiol. 2016; 310: C894–C902.
- Stipanuk MH, Ueki I. Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur. J Inherit Metab Dis. 2011; 34: 17–32.
- Toohey JI, Cooper AJ. Thiosulfoxide (sulfane) sulfur: New chemistry and new regulatory roles in biology. Molecules. 2014; 19: 12789–813.
- Kimura H. Hydrogen sulfide: its production, release and functions. Amino acids. 2011; 41: 113–21.
- Toohey JI. Sulfur signaling: Is the agent sulfide or sulfane? Anal Biochem. 2011; 413: 1–7.
- Yamanishi T, Tuboi S. The mechanism of the L-cystine cleavage reaction. J Biochem. 1981; 89.
- Kabil O, Banerjee R. Enzymology of H2S biogenesis, decay and signaling. Antioxid Redox Signal. 2014; 20: 770–82.
- Ploegman JH, Drent G, Kalk KH, Hol WGJ, Heinrikson RL, Keim P, Weng L, Russell J. The covalent and tertiary structure of bovine liver rhodanese. Nature. 1978; 273: 124–9.
- Toohey JI. Sulphane sulphur in biological systems: A possible regulatory role. Biochem. J. 1989; 264: 625–32.
- Libiad M, Sriraman A, Banerjee R. Polymorphic variants of human rhodanese exhibit differences in thermal stability and sulfur transfer kinetics. J Biol Chem. 2015; 290: 23579–88.
- Libiad M, Yadav PK, Vitvitsky V, Martinov M, Banerjee R. Organization of the human mitochondrial hydrogen sulfide oxidation pathway. J Biol Chem. 2014; 289: 30901–10.
- Francioso A, Conrado AB, Mosca L, Fontana M. Chemistry and biochemistry of sulfur natural compounds: Key intermediates of metabolism and redox biology. Oxid Med Cell Longev. 2020: 8294158.
- Schilling D, Ditrói T, Barayeu U, Jurányi EP, Nagy P, Dick TP. The influence of alkylating agents on sulfur-sulfur bonds in per- and polysulfides. Curr Opin Chem Biol. 2023; 76: 102368.
- Mishanina TV, Libiad M, Banerjee R. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat Chem Biol. 2015; 11: 457–64.
- Wood JL. Sulfane sulfur. Methods Enzymol. 1987; 143: 25–9.
- Benchoam D, Cuevasanta E, Semelak JA, Mastrogiovanni M, Estrin DA, Möller MN, Alvarez B. Disulfides form persulfides at alkaline pH leading to potential overestimations in the cold cyanolysis method. Free Radic Biol Med. 2023; 207: 63–71.
- Bronowicka-Adamska P, Bentke A, Wróbel M. Hydrogen sulfide generation from l-cysteine in the human glioblastoma-astrocytoma U-87 MG and neuroblastoma SHSY5Y cell line. Acta Biochim Pol. 2017; 1: 171–6.
- Shieh M, Xu S, Lederberg OL, Xian M. Detection of sulfane sulfur species in biological systems. Redox Biol. 2022; 57: 102502.
- Takata T, Jung M, Matsunaga T, Ida T, Morita M, Motohashi H, Shen X, Kevil CG, Fukuto JM, Akaike T. Methods in sulfide and persulfide research. Nitric Oxide. 2021; 116: 47–64.
- Echizen H, Sasaki E, Hanaoka K. Recent advances in detection, isolation, and imaging techniques for sulfane sulfur containing biomolecules. Biomolecules. 2021; 11: 1553.
- Shinkai Y, Kumagai Y. Sulfane sulfur in toxicology: A novel defense system against electrophilic stress. Toxicol Sci. 2019; 170: 3–9.
- Roy B, Shieh M, Ramush G, Xian M. Organelle-targeted fluorescent probes for sulfane sulfur species. Antioxidants (Basel). 2023; 12: 590.
- Kasamatsu S, Kinno A, Hishiyama JI, Akaike T, Ihara H. Development of methods for quantitative determination of the total and reactive polysulfides: Reactive polysulfide profiling in vegetables. Food Chem. 2023; 413: 135610.
- Kasamatsu S, Ida T, Koga T, Asada K, Motohashi H, Ihara H, Akaike T. High-precision sulfur metabolomics innovated by a new specific probe for trapping reactive sulfur species. Antioxid Redox Signal. 2021; 34: 1407–19.
- Li Z, Wang Q, Xia Y, Xun L, Liu H. A red fluorescent protein-based probe for detection of intracellular reactive sulfane sulfur. Antioxidants (Basel). 2020; 9: 985.
- Li W, Wang L, Yin S, Lai H, Yuan L, Zhang X. Engineering a highly selective probe for ratiometric imaging of H2S n and revealing its signaling pathway in fatty liver disease. Chem Sci. 2020; 11: 7991–9.
- Liu H, Radford MN, Yang CT, Chen W, Xian M. Inorganic hydrogen polysulfides: chemistry, chemical biology and detection. Br J Pharmacol. 2019; 176: 616–27.
- Yu Q, Ran M, Yang Y, Liu H, Xun L, Xia Y. Optimization of a method for detecting intracellular sulfane sulfur levels and evaluation of reagents that affect the levels in Escherichia coli. Antioxidants (Basel). 2022; 11: 1292.
- Ran M, Wang T, Shao M, Chen Z, Liu H, Xia Y, Xun L. Sensitive method for reliable quantification of sulfane sulfur in biological samples. Anal Chem. 2019; 91: 11981–6.
- Neill DL, Chang YC, Chen W, Li L, Xian M. A smartphone based device for the detection of sulfane sulfurs in biological systems. Sens Actuators B Chem. 2019; 292: 263–9.
- Lowry O, Rosenbrough N, Farr A, Randall R. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193: 265–75.
- Wróbel M, Czubak J, Bronowicka-Adamska P, Jurkowska H, Adamek D, Papla B. Is development of high-grade gliomas sulfur-dependent? Molecules. 2014; 19: 21350–62.
- Wróbel M, Ubuka T, Yao WB, Abe T. L-cysteine metabolism in guinea pig and rat tissues. Comp Biochem Physiol B Biochem Mol Biol. 1997; 116: 223–6.
- Szlęzak D, Bronowicka-Adamska P, Hutsch T, Ufnal M, Wróbel M. Hypertension and aging affect liver sulfur metabolism in rats. Cells. 2021; 10: 1238.
- Szlęzak D, Hutsch T, Ufnal M. Wróbel M. Heart and kidney H2S production is reduced in hypertensive and older rats. Biochimie. 2022; 199: 130–8.
- Wróbel M, Ubuka T, Yao WB, Tadashi A. Effects of thyroxine on L-cysteine desulfuration in mouse liver. Acta Med Okayama. 2000; 54: 9–14.
- Sokołowska M, Włodek L, Wróbel M, Srebro Z. The effect of nitrogen oxide level modulation on the content of thiol compounds and anaerobic sulfur metabolism in mice kidney and liver. Acta Biol Crac, Ser Zool. 1999; 35–42.
- Wróbel M, Włodek L, Srebro Z. Sulfurtransferases activity and the level of low-molecular-weight thiols and sulfane sulfur compounds in cortex and brain stem of mouse. Neurobiology. 1996; 4: 217–22.
- Kaczor-Kamińska M, Kamiński K, Stalińska K, Wróbel M, Feldman A. Effect of glycosaminoglycans accumulation on the non-oxidative sulfur metabolism in mouse model of Sanfilippo syndrome, type B. Acta Biochim Pol. 2019; 66: 567–76.
- Wróbel M, Sura P, Srebro Z. Seasonal changes in the content of some sulfur compounds and sulfur-rich cytoplasmic granules in hepatocytes of the frog Rana temporaria. Acta Biol Crac, Ser Zool. 2000; 42: 99–102.
- Sura P, Ristic N, Bronowicka P, Wróbel M. Cadmium toxicity related to cysteine metabolism and glutathione levels in frog Rana ridibunda tissues. Comp Biochem Physiol C Toxicol Pharmacol. 2006; 142: 128–35.
- Sura P, Wróbel M, Bronowicka P. Season dependent response of the marsh frog (Rana ridibunda). Folia Biol (Krakow). 2006; 54.
- Kaczor-Kamińska M, Sura P, Wróbel M. Multidirectional changes in parameters related to sulfur metabolism in frog tissues exposed to heavy metal-related stress. Biomolecules. 2020; 10: 574.
- Jurkowska H, Uchacz T, Roberts J, Wróbel M. Potential therapeutic advantage of ribose-cysteine in the inhibition of astrocytoma cell proliferation. Amino Acids. 2011; 41: 131–9.
- Kaczor-Kamińska M, Kamiński K, Wróbel M. The expression and activity of rhodanese, 3-mercaptopyruvate sulfurtransferase, cystathionine γ-lyase in the most frequently chosen cellular research models. Biomolecules. 2021; 11: 1859.
- Kaczor-Kamińska M, Stalińska K, Kamiński K, Pisarek A, Maziarz U, Feldman A, Wróbel M. Murine cellular model of mucopolysaccharidosis, type IIIB (MPS IIIB) – A preliminary study with particular emphasis on the non-oxidative L-cysteine metabolism. Biochimie. 2020; 174: 84–94.
- Bronowicka-Adamska P, Jurkowska H, Gawda A, Skalska P, Nazimek K, Marcinkiewicz J, Wróbel M. Expression and activity of hydrogen sulfide generating enzymes in murine macrophages stimulated with lipopolysaccharide and interferon-γ. Mol Biol Rep. 2019; 46: 2791–8.
- Jurkowska H, Wróbel M, Kaczor-Kamińska M, Jasek-Gajda E. A possible mechanism of inhibition of U87MG and SH-SY5Y cancer cell proliferation by diallyl trisulfide and other aspects of its activity. Amino Acids. 2017; 49: 1855–66.
- Bronowicka-Adamska P, Bentke A, Lasota M, Wróbel M. Effect of S-allyl-L-cysteine on MCF-7 cell line 3-mercaptopyruvate sulfurtransferase/sulfane sulfur system, viability and apoptosis. IJMS. 2020; 21.
- Wróbel M, Jurkowska H, Śliwa L, Srebro Z. Sulfurtransferases and cyanide detoxification in mouse. Toxicol Mech Methods. 2004; 14: 331–7.
- Wróbel M, Jurkowska H. Menadione effect on l-cysteine desulfuration in U373 cells. Acta Biochim Pol. 2007; 54: 407–11.
- Jurkowska H, Wróbel M. N-acetyl-L-cysteine as a source of sulfane sulfur in astrocytoma. Amino Acids. 2008; 34: 231–7.
- Wróbel M, Lewandowska I, Bronowicka-Adamska P, Paszewski A. The level of sulfane sulfur in the fungus Aspergillus nidulans wild. Amino Acids. 2009; 37: 565–71.
- Droge W. Oxidative stress and ageing: is ageing a cysteine deficiency syndrome? Philos Trans R Soc Lond B Biol Sci. 2005; 360: 2355–72.
- Droge W, Kinscherf R, Hildebrandt W, Schmitt T. The deficit in low molecular weight thiols as a target for antiageing therapy. Curr Drug Targets. 2006; 7: 1505–12.
- Nimni ME, Han B, Cordoba F. Are we getting enough sulfur in our diet? Nutr Metab (Lond). 2007; 4: 12.
- Panagaki T, Lozano-Montes L, Janickova L, Zuhra K, Szabo MP, Majtan T, Raine G, Maréchal D, Herault Y, Szabo C. Overproduction of hydrogen sulfide, generated by cystathionine β-synthase, disrupts brain wave patterns and contributes to neurobehavioral dysfunction in a rat model of down syndrome. Redox Biol. 2022; 51: 102233.
- Kunikata H, Ida T, Sato K, Aizawa N, Sawa T, Tawarayama H, Murayama N, Fujii S, Akaike T, Nakazawa T. Metabolomic profiling of reactive persulfides and polysulfides in the aqueous and vitreous humors. Sci Rep. 2017; 7: 41984.
- Numakura T, Sugiura H, Akaike T, Ida T, Fujii S, Koarai A, Yamada M, Onodera K, Hashimoto Y, Tanaka R, et al. Production of reactive persulfide species in chronic obstructive pulmonary disease. Thorax. 2017; 72: 1074–83.
- Olson KR, Straub KD. The role of hydrogen sulfide in evolution and the evolution of hydrogen sulfide in metabolism and signaling. Physiology (Bethesda). 2016; 31: 60–72.
- Olson KR. H2S and polysulfide metabolism: Conventional and unconventional pathways. Biochem Pharmacol. 2018; 149: 77–90.
- Kolluru GK, Shackelford RE, Shen X, Dominic P, Kevil CG. Sulfide regulation of cardiovascular function in health and disease. Nat Rev Cardiol. 2023; 20: 109–25.
- Bełtowski J, Jamroz-Wiśniewska A. Hydrogen sulfide in the adipose tissue—physiology, pathology and a target for pharmacotherapy. Molecules. 2017; 22.
- Feliers D, Lee HJ, Kasinath BS. Hydrogen sulfide in renal physiology and disease. Antioxid Redox Signal. 2016; 25: 720–31.
- Pharoah BM, Zhang C, Khodade VS, Keceli G, McGinity C, Paolocci N, Toscano JP. Hydropersulfides (RSSH) attenuate doxorubicin-induced cardiotoxicity while boosting its anticancer action. Redox Biol. 2023; 60: 102625.
- Zuhra K, Tome CS, Forte E, Vicente JB, Giuffre A. The multifaceted roles of sulfane sulfur species in cancer-associated processes. Biochim Biophys Acta Bioenerg. 2021; 1862.
- Gao M, Wang R, Yu F, Li B, Chen L. Imaging of intracellular sulfane sulfur expression changes under hypoxic stress via a selenium containing near-infrared fluorescent probe. J Mater Chem B. 2018; 6: 6637–45.
- Herr I, Büchler MW. Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer Treat Rev. 2010; 36: 377–83.
- Giacoppo S, Galuppo M, Montaut S, Iori R, Rollin P, Bramanti P, Mazzon E. An overview on neuroprotective effects of isothiocyanates for the treatment of neurodegenerative diseases. Fitoterapia. 2015; 106: 12–21.
- Sun HJ, Wu ZY, Nie XW, Bian JS. Role of hydrogen sulfide and polysulfides in neurological diseases: focus on protein S-persulfidation. Curr Neuropharmacol. 2021; 19: 868–84.
- Disbrow E, Stokes KY, Ledbetter C, Patterson J, Kelley R, Pardue S, Reekes T, Larmeu L, Batra V, Yuan S, et al. Plasma hydrogen sulfide: A biomarker of Alzheimer's disease and related dementias. Alzheimers Dement. 2021; 17: 1391–402.
- Ide M, Ohnishi T, Toyoshima M, Balan S, Maekawa M, Shimamoto-Mitsuyama C, Iwayama Y, Ohba H, Watanabe A, Ishii T, et al. Excess hydrogen sulfide and polysulfides production underlies a schizophrenia pathophysiology. EMBO Mol Med. 2019; 11: e10695.