Chan C.K., Aimagambetova G., Ukybassova T., Kongrtay K., Azizan A.: Human papillomavirus infection and cervical cancer: Epidemiology, screening, and vaccination – review of current perspectives. J. Oncol., 2019; 2019: 3257939
DiGiuseppe S., Bienkowska-Haba M., Guion L.G., Sapp M.: Cruising the cellular highways: How human papillomavirus travels from the surface to the nucleus. Virus Res., 2017; 231: 1-9
International Agency for Research on Cancer: IARC monographs on the evaluation of carcinogenic risks to humans. Biologica agents, volume 100 B, A review of human carcinogenesis. International Agency for Research on Cancer, Lyon 2012
Doorbar J., Quint W., Banks L., Bravo I.G., Stoler M., Broker T.R., Stanley M.A.: The biology and life-cycle of human papillomaviruses. Vaccine, 2012; 30: F55-F70
Gillison M.L., Chaturvedi A.K., Anderson W.F., Fakhry C.: Epidemiology of human papillomavirus-positive head and neck squamous cell carcinoma. J. Clin. Oncol., 2015; 33: 3235-3242
Osazuwa-Peters N., Massa S.T., Simpson M.C., Adjei Boakye E., Varvares M.A.: Survival of human papillomavirus-associated cancers: Filling in the gaps. Cancer, 2018; 124: 18-20
Wright T.C. Jr., Massad L.S., Dunton C.J., Spitzer M., Wilkinson E.J., Solomon D., 2006 American Society for Colposcopy and Cervical Pathology-sponsored Consensus Conference: 2006 consensus guidelines for the management of women with abnormal cervical cancer screening tests. Am. J. Obstet. Gynecol., 2007; 197: 346-355
Burley M., Roberts S., Parish J.L.: Epigenetic regulation of human papillomavirus transcription in the productive virus life cycle. Sem. Immunopathol., 2020; 42: 159-171
Laaneväli A., Ustav M., Ustav E., Piirsoo M.: E2 protein is the major determinant of specificity at the human papillomavirus origin of replication. PLoS One, 2019; 14: e0224334
Sitz J., Blanchet S.A., Gameiro S.F., Biquand E., Morgan T.M., Galloy M., Dessapt J., Lavoie E.G., Blondeau A., Smith B.C. i wsp.: Human papillomavirus E7 oncoprotein targets RNF168 to hijack the host DNA damage response. Proc. Natl. Acad. Sci. USA, 2019; 116: 19552-19562
Squarzanti D.F., Sorrentino R., Landini M.M., Chiesa A., Pinato S., Rocchio F., Mattii M., Penengo L., Azzimonti B.: Human papillomavirus type 16 E6 and E7 oncoproteins interact with the nuclear p53-binding protein 1 in an in vitro reconstructed 3D epithelium: New insights for the virus-induced DNA damage response. Virol. J., 2018; 15: 176
Dreer M., van de Poel S., Stubenrauch F.: Control of viral replication and transcription by the papillomavirus E8^E2 protein. Virus Res., 2017; 231: 96-102
Zhang W., Kazakov T., Popa A., DiMaio D.: Vesicular trafficking of incoming human papillomavirus 16 to the Golgi apparatus and endoplasmic reticulum requires γ-secretase activity. mBio, 2014; 5: e01777-14
DiGiuseppe S., Luszczek W., Keiffer T.R., Bienkowska-Haba M., Guion L.G., Sapp M.J.: Incoming human papillomavirus type 16 genome resides in a vesicular compartment throughout mitosis. Proc. Natl. Acad. Sci. USA, 2016; 113: 6289-6294
Aydin I., Weber S., Snijder B., Ventayol P.S., Kühbacher A., Becker M., Day P.M., Schiller J.T., Kann M., Pelkmans L. i wsp.: Large scale RNAi reveals the requirement of nuclear envelope breakdown for nuclear import of human papillomaviruses. PLoS Pathog, 2014; 10: e1004162
Smith J.A., White E.A., Sowa M.E., Powell M.L., Ottinger M., Harper J.W., Howley P.M.: Genome-wide siRNA screen identifies SMCX, EP400, and Brd4 as E2-dependent regulators of human papillomavirus oncogene expression. Proc. Natl. Acad. Sci. USA, 2010; 107: 3752-3757
Gunasekharan V.K., Li Y., Andrade J., Laimins L.A.: Post-transcriptional regulation of KLF4 by high-risk human papillomaviruses is necessary for the differentiation-dependent viral life cycle. PLoS Pathog., 2016; 12: e1005747
Davy C., McIntosh P., Jackson D.J., Sorathia R., Miell M., Wang Q., Khan J., Soneji Y., Doorbar J.: A novel interaction between the human papillomavirus type 16 E2 and E1^ E4 proteins leads to stabilization of E2. Virology, 2009; 394: 266-275
Egawa N., Wang Q., Griffin H.M., Murakami I., Jackson D., Mahmood R., Doorbar J.: HPV16 and 18 genome amplification show different E4-dependence, with 16E4 enhancing E1 nuclear accumulation and replicative efficiency via its cell cycle arrest and kinase activation functions. PLOS Pathog., 2017; 13: e1006282
Prescott E.L., Brimacombe C.L., Hartley M., Bell I., Graham S., Roberts S.: Human papillomavirus type 1 E1^ E4 protein is a potent inhibitor of the serine-arginine (SR) protein kinase SRPK1 and inhibits phosphorylation of host SR proteins and of the viral transcription and replication regulator E2. J. Virol., 2014; 88: 1259912611
Ashrafi G.H., Haghshenas M., Marchetti B., Campo M.S.: E5 protein of human papillomavirus 16 downregulates HLA class I and interacts with the heavy chain via its first hydrophobic domain. Int. J. Cancer, 2006; 119: 2105-2112
Wetherill L.F., Holmes K.K., Verow M., Müller M., Howell G., Harris M., Fishwick C., Stonehouse N., Foster R., Blair G.E. i wsp.: High-risk human papillomavirus E5 oncoprotein displays channel-forming activity sensitive to small-molecule inhibitors. J. Virol., 2012; 86: 5341-5351
Graham S.V.: Human papillomavirus: Gene expression, regulation and prospects for novel diagnostic methods and antiviral therapies. Future Microbiol., 2010; 5: 1493-1506
Sakakibara N., Chen D., McBride A.A.: Papillomaviruses use recombination-dependent replication to vegetatively amplify their genomes in differentiated cells. PLoS Pathog., 2013; 9: e1003321
Banerjee N.S., Wang H.K., Broker T.R., Chow L.T.: Human papillomavirus (HPV) E7 induces prolonged G2 following S phase reentry in differentiated human keratinocytes. J. Biol. Chem., 2011; 286: 15473-15482
Yuan C.H., Filippova M., Duerksen-Hughes P.: Modulation of apoptotic pathways by human papillomaviruses (HPV): Mechanisms and implications for therapy. Viruses, 2012; 4: 3831-3850
White E.A., Kramer R.E., Tan M.J., Hayes S.D., Harper J.W., Howley P.M.: Comprehensive analysis of host cellular interactions with human papillomavirus E6 proteins identifies new E6 binding partners and reflects viral diversity. J. Virol., 2012; 86: 1317413186
Pacini L., Savini C., Ghittoni R., Saidj D., Lamartine J., Hasan U.A., Accardi R., Tommasino M.: Downregulation of Toll-like receptor 9 expression by beta human papillomavirus 38 and implications for cell cycle control. J. Virol., 2015; 89: 11396-11405
Wongworawat Y.C., Filippova M., Williams V.M., Filippov V., Duerksen-Hughes P.J.: Chronic oxidative stress increases the integration frequency of foreign DNA and human papillomavirus 16 in human keratinocytes. Am. J. Cancer Res., 2016; 6: 764-780
Heino P., Zhou J., Lambert P.F.: Interaction of the papillomavirus transcription/replication factor, E2, and the viral capsid protein, L2. Virology, 2000; 276: 304-314
Bodily J.M., Hennigan C., Wrobel G.A., Rodriguez C.M.: Regulation of the human papillomavirus type 16 late promoter by E7 and the cell cycle. Virology, 2013; 443: 11-19
Grm H.S., Massimi P., Gammoh N., Banks L.: Crosstalk between the human papillomavirus E2 transcriptional activator and the E6 oncoprotein. Oncogene, 2005; 24: 5149-5164
Li Y., Cai Q., Lin L., Xu C.: MiR-875 and miR-3144 switch the human papillomavirus 16 E6/E6* mRNA ratio through the EGFR pathway and a direct targeting effect. Gene, 2018; 679: 389-397
Li Y., Liu J., Yuan C., Cui B., Zou X., Qiao Y.: High-risk human papillomavirus reduces the expression of microRNA-218 in women with cervical intraepithelial neoplasia. J. Int. Med. Res., 2010; 38: 1730-1736
Melar-New M., Laimins L.A.: Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins. J. Virol., 2010; 84: 5212-5221
Ofir M., Hacohen D., Ginsberg D.: MiR-15 and miR-16 are direct transcriptional targets of E2F1 that limit E2F-induced proliferation by targeting cyclin E. Mol. Cancer Res., 2011; 9: 440-447
Wang X., Wang H.K., Li Y., Hafner M., Banerjee N.S., Tang S., Briskin D., Meyers C., Chow L.T., Xie X. i wsp.: microRNAs are biomarkers of oncogenic human papillomavirus infections. Proc. Natl. Acad. Sci. USA, 2014; 111: 4262-4267
Honegger A., Schilling D., Bastian S., Sponagel J., Kuryshev V., Sültmann H., Scheffner M., Hoppe-Seyler K., Hoppe-Seyler F.: Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathog, 2015; 11: e1004712
Gunasekharan V., Laimins L.A.: Human papillomaviruses modulate microRNA 145 expression to directly control genome amplification. J. Virol., 2013; 87: 6037-6043
Matsuoka S., Ballif B.A., Smogorzewska A., McDonald E.R.3rd, Hurov K.E., Luo J., Bakalarski C.E., Zhao Z., Solimini N., Lerenthal Y. i wsp.: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science, 2007; 316: 1160-1166
Sulli G., Di Micco R., d’Adda di Fagagna F.: Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nat. Rev. Cancer, 2012; 12: 709-720
Spriggs C.C., Laimins L.A.: Human papillomavirus and the DNA damage response: Exploiting host repair pathways for viral replication. Viruses, 2017; 9: 232
Sy S.M., Huen M.S., Chen J.: PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc. Natl. Acad. Sci. USA, 2009; 106: 7155-7160
Nilsson K., Wu C., Schwartz S.: Role of the DNA damage response in human papillomavirus RNA splicing and polyadenylation. Int. J. Mol. Sci., 2018; 19: 1735
Moody C.A., Laimins L.A.: Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog., 2009; 5: e1000605
Sakakibara N., Mitra R., McBride A.A.: The papillomavirus E1 helicase activates a cellular DNA damage response in viral replication foci. J. Virol., 2011; 85: 8981-8995
Chappell W.H., Gautam D., Ok S.T., Johnson B.A., Anacker D.C., Moody C.A.: Homologous recombination repair factors Rad51 and BRCA1 are necessary for productive replication of human papillomavirus 31. J. Virol., 2015; 90: 2639-2652
Hong S., Dutta A., Laimins L.A.: The acetyltransferase Tip60 is a critical regulator of the differentiation-dependent amplification of human papillomaviruses. J. Virol., 2015; 89: 4668-4675
Langsfeld E.S., Bodily J.M., Laimins L.A.: The deacetylase sirtuin 1 regulates human papillomavirus replication by modulating histone acetylation and recruitment of DNA damage factors NBS1 and Rad51 to viral genomes. PLoS Pathog, 2015; 11: e1005181
Hoffmann R., Hirt B., Bechtold V., Beard P., Raj K.: Different modes of human papillomavirus DNA replication during maintenance. J. Virol., 2006; 80: 4431-4439
Mehta K., Gunasekharan V., Satsuka A., Laimins L.A.: Human papillomaviruses activate and recruit SMC1 cohesin proteins for the differentiation-dependent life cycle through association with CTCF insulators. PLoS Pathog, 2015; 11: e1004763
Sun M., Nishino T., Marko J.F.: The SMC1-SMC3 cohesin heterodimer structures DNA through supercoiling-dependent loop formation. Nucleic Acids Res., 2013; 41: 6149-6160
Hong S., Cheng S., Iovane A., Laimins L.A.: STAT-5 regulates transcription of the topoisomerase IIβ-binding protein 1 (TopBP1) gene to activate the ATR pathway and promote human papillomavirus replication. mBio, 2015; 6: e02006-15
Reinson T., Toots M., Kadaja M., Pipitch R., Allik M., Ustav E., Ustav M.: Engagement of the ATR-dependent DNA damage response at the human papillomavirus 18 replication centers during the initial amplification. J. Virol., 2013; 87: 951-964
Bristol M.L., Das D., Morgan I.M.: Why human papillomaviruses activate the DNA damage response (DDR) and how cellular and viral replication persists in the presence of DDR signaling. Viruses, 2017; 9: 268
Anacker D.C., Aloor H.L., Shepard C.N., Lenzi G.M., Johnson B.A., Kim B., Moody C.A.: HPV31 utilizes the ATR-Chk1 pathway to maintain elevated RRM2 levels and a replication-competent environment in differentiating keratinocytes. Virology, 2016; 499: 383-396
Edwards T.G., Helmus M.J., Koeller K., Bashkin J.K., Fisher C.: Human papillomavirus episome stability is reduced by aphidicolin and controlled by DNA damage response pathways. J. Virol., 2013; 87: 3979-3989
Bester A.C., Roniger M., Oren Y.S., Im M.M., Sarni D., Chaoat M., Bensimon A., Zamir G., Shewach D.S., Kerem B.: Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell, 2011; 145: 435-446
Kotsantis P., Petermann E., Boulton S.J.: Mechanisms of oncogene-induced replication stress: Jigsaw falling into place. Cancer Discov., 2018; 8: 537-555
Toledo L.I., Murga M., Zur R., Soria R., Rodriguez A., Martinez S., Oyarzabal J., Pastor J., Bischoff J.R., Fernandez-Capetillo O.: A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat. Struct. Mol. Biol., 2011; 18: 721-727
Jang M.K., Shen K., McBride A.A.: Papillomavirus genomes associate with BRD4 to replicate at fragile sites in the host genome. PLoS Pathog, 2014; 10: e1004117
Mehta K., Laimins L.: Human papillomaviruses preferentially recruit DNA repair factors to viral genomes for rapid repair and amplification. mBio, 2018; 9: e00064-18
McBride A.A.: Playing with fire: Consequences of human papillomavirus DNA replication adjacent to genetically unstable regions of host chromatin. Curr. Opin. Virol., 2017; 26: 63-68
Gao G., Johnson S.H., Vasmatzis G., Pauley C.E., Tombers N.M., Kasperbauer J.L., Smith D.I.: Common fragile sites (CFS) and extremely large CFS genes are targets for human papillomavirus integrations and chromosome rearrangements in oropharyngeal squamous cell carcinoma. Genes Chromosomes Cancer, 2017; 56: 59-74
Liu G.B., Chen J., Wu Z.H., Zhao K.N.: Association of human papillomavirus with Fanconi anemia promotes carcinogenesis in Fanconi anemia patients. Rev. Med. Virol., 2015; 25: 345-353
Spardy N., Duensing A., Hoskins E.E., Wells S.I., Duensing S.: HPV-16 E7 reveals a link between DNA replication stress, Fanconi anemia D2 protein, and alternative lengthening of telomereassociated promyelocytic leukemia bodies. Cancer Res., 2008; 68: 9954-9963
Hoskins E.E., Morreale R.J., Werner S.P., Higginbotham J.M., Laimins L.A., Lambert P.F., Brown D.R., Gillison M.L., Nuovo G.J., Witte D.P. i wsp.: The Fanconi anemia pathway limits human papillomavirus replication. J. Virol., 2012; 86: 8131-8138
Park J.W., Pitot H.C., Strati K., Spardy N., Duensing S., Grompe M., Lambert P.F.: Deficiencies in the Fanconi anemia DNA damage response pathway increase sensitivity to HPV-associated head and neck cancer. Cancer Res., 2010; 70: 9959-9968
Spriggs C.C., Laimins L.A.: FANCD2 binds human papillomavirus genomes and associates with a distinct set of DNA repair proteins to regulate viral replication. mBio, 2017; 8: e02340-16
Tan W., van Twest S., Murphy V.J., Deans A.J.: ATR-mediated FANCI phosphorylation regulates both ubiquitination and deubiquitination of FANCD2. Front. Cell Dev. Biol., 2020; 8: 2
Romick-Rosendale L.E., Hoskins E.E., Privette Vinnedge L.M., Foglesong G.D., Brusadelli M.G., Potter S.S., Komurov K., Brugmann S.A., Lambert P.F., Kimple R.J. i wsp.: Defects in the Fanconi anemia pathway in head and neck cancer cells stimulate tumor cell invasion through DNA-PK and Rac1 signaling. Clin. Cancer Res., 2016; 22: 2062-2073