References
- Ehrlich P.: On immunity with special reference to cell life. Proc. R. Soc. Lond., 1900; 66: 424-448
- Steinman L.: Escape from “horror autotoxicus”: Pathogenesis and treatment of autoimmune disease. Cell, 1995; 80: 7-10
- Dighiero G., Lymberi P., Guilbert B., Ternynck T., Avrameas S.: Natural autoantibodies constitute a substantial part of normal circulating immunoglobulins. Ann. N. Y. Acad. Sci., 1986; 475: 135145
- Bottazzo G.F., Florin-Christensen A., Doniach D.: Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet, 1974; 2: 1279-1283
- Wilkin T.J.: The accelerator hypothesis: Weight gain as the missing link between type I and type II diabetes. Diabetologia, 2001; 44: 914-922
- Wilkin T.J.: The accelerator hypothesis: A review of the evidence for insulin resistance as the basis for type I as well as type II diabetes. Int. J. Obes., 2009; 33: 716-726
- Zhou T., Hu Z., Yang S., Sun L., Yu Z., Wang G.: Role of adaptive and innate immunity in type 2 diabetes mellitus. J. Diabetes Res., 2018; 2018: 7457269
- Moura J., Madureira P., Leal E.C., Fonseca A.C., Carvalho E.: Immune aging in diabetes and its implications in wound healing. Clin. Immunol., 2019; 200: 43-54
- Winer D.A., Winer S., Shen L., Wadia P.P., Yantha J., Paltser G., Tsui H., Wu P., Davidson M.G., Alonso M.N. i wsp.: B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat. Med., 2011; 17: 610-617
- Winer S., Chan Y., Paltser G., Truong D., Tsui H., Bahrami J., Dorfman R., Wang Y., Zielenski J., Mastronardi F. i wsp.: Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med., 2009; 15: 921-929
- Cooper G.S., Bynum M.L., Somers E.C.: Recent insights in the epidemiology of autoimmune diseases: Improved prevalence estimates and understanding of clustering of diseases. J. Autoimmun., 2009; 33: 197-207
- Gianchecchi E., Fierabracci A.: Recent advances on microbiota involvement in the pathogenesis of autoimmunity. Int. J. Mol. Sci., 2019; 20: 283
- Hewagama A., Richardson B.: The genetics and epigenetics of autoimmune diseases. J. Autoimmun., 2009; 33: 3-11
- Romagnani S.: Immunological tolerance and autoimmunity. Intern. Emerg. Med., 2006; 1: 187-196
- Tomer Y.: Mechanisms of autoimmune thyroid diseases: From genetics to epigenetics. Annu. Rev. Pathol., 2014; 9: 147-156
- Jacobson E.M., Huber A,. Tomer Y.: The HLA gene complex in thyroid autoimmunity: From epidemiology to etiology. J. Autoimmun., 2008; 30: 58-62
- Burek C.L., Talor M.V.: Environmental triggers of autoimmune thyroiditis. J. Autoimmun., 2009; 33: 183-189
- Yoshitake T., Murakami T., Yoshitake S., Suzuma K., Dodo Y., Fujimoto M., Ito S., Tsujikawa A.: Anti-hexokinase 1 antibody as a novel serum biomarker of a subgroup of diabetic macular edema. Sci. Rep., 2019; 9: 4806
- Schroner Z., Lazurova I., Petrovicova J.: Autoimmune thyroid diseases in patients with diabetes mellitus. Bratisl. Lek. Listy, 2008; 109: 125-129
- Cerna M.: Epigenetic regulation in etiology of type 1 diabetes mellitus. Int. J. Mol. Sci., 2019; 21: 36
- Phillips B.E., Garciafigueroa Y., Engman C., Trucco M., Giannoukakis N.: Tolerogenic dendritic cells and T-regulatory cells at the clinical trials crossroad for the treatment of autoimmune disease; emphasis on type 1 diabetes therapy. Front. Immunol., 2019; 10: 148
- Erichsen M.M., Løvås K., Skinningsrud B., Wolff A.B., Undlien D.E., Svartberg J., Fougner K.J., Berg T.J., Bollerslev J., Mella B. i wsp.: Clinical, immunological, and genetic features of autoimmune primary adrenal insufficiency: Observations from a Norwegian registry. J. Clin. Endocrinol. Metab., 2009; 94: 4882-4890
- Bronstad I., Wolff A.S., Løvås K., Knappskog P.M., Husebye E.S.: Genome-wide copy number variation (CNV) in patients with autoimmune Addison’s disease. BMC Med. Genet., 2011; 12: 111
- Bjanesoy T.E., Andreassen B.K., Bratland E., Reiner A., Islam S., Husebye E.S., Bakke M.: Altered DNA methylation profile in Norwegian patients with autoimmune Addison’s disease. Mol. Immunol., 2014; 59: 208-216
- Hellesen A., Bratland E.: The potential role for infections in the pathogenesis of autoimmune Addison’s disease. Clin. Exp. Immunol., 2019; 195: 52-63
- Hellesen A., Edvardsen K., Breivik L., Husebye E.S., Bratland E.: The effect of types I and III interferons on adrenocortical cells and its possible implications for autoimmune Addison’s disease. Clin. Exp. Immunol., 2017; 176: 351-362
- Bizzaro N., Antico A.: Diagnosis and classification of pernicious anemia. Autoimmun. Rev., 2014; 13: 565-568
- Lahner E., Gentile G., Purchiaroni F., Mora B., Simmaco M., Annibale B.: Single nucleotide polymorphisms related to vitamin B12 serum levels in autoimmune gastritis patients with or without pernicious anaemia. Dig. Liver Dis., 2015; 47: 285-290
- Lahner E., Annibale B.: Pernicious anemia: New insights from a gastroenterological point of view. World J. Gastroenterol., 2009; 15: 5121-5128
- Chou R., Bougatsos C., Blazina I., Mackey K., Grusing S., Selph S.: Screening for celiac disease: Evidence report and systematic review for the US preventive services task force. JAMA, 2017; 317: 1258-1268
- Ludvigsson J.F., Bai J.C., Biagi F., Card T.R., Ciacci C., Ciclitira P.J., Green P.H., Hadjivassiliou M., Holdoway A., van Heel D.A. i wsp.: D. Diagnosis and management of adult coeliac disease: Guidelines from the British Society of Gastroenterology. Gut, 2014; 63: 1210-1228
- Garner C.P., Murray J.A., Ding Y.C., Tien Z., van Heel D.A., Neuhausen S.L.: Replication of celiac disease UK genome-wide association study results in a US population. Hum. Mol. Genet., 2009; 18: 4219-4225
- Ohlsson B., Ekblad E., Veress B., Montgomery A., Janciauskiene S.: Antibodies against gonadotropin-releasing hormone (GnRH) and destruction of enteric neurons in 3 patients suffering from gastrointestinal dysfunction. BMC Gastroenterol., 2010; 10: 48
- Betterle C., Dal Pra C., Mantero F., Zanchetta R.: Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: Autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. Endocr. Rev., 2002; 23: 327-364
- Checchi S., Montanaro A., Ciuoli C., Brusco L., Pasqui L., Fioravanti C., Sestini F., Pacini F.: Prevalence of parietal cell antibodies in a large cohort of patients with autoimmune thyroiditis. Thyroid, 2010; 20: 1385-1389
- Kahaly G.J., Frommer L.: Polyglandular autoimmune syndromes. J. Endocrinol. Invest., 2018; 41: 91-98
- Nederstigt C., Uitbeijerse B.S., Janssen L.G., Corssmit E.P., de Koning E.J., Dekkers O.M.: Associated auto-immune disease in type 1 diabetes patients: A systematic review and meta-analysis. Eur. J. Endocrinol., 2019; 180: 135-144
- Shimura K., Miura J., Kawamoto M., Kawaguchi Y., Yamanaka H., Uchigata Y.: Genetic differences between type 1 diabetes with and without other autoimmune diseases. Diabetes Metab. Res. Rev., 2018; 34: e3023
- Stene L.C., Rewers M.: Immunology in the clinic review series; focus on type 1 diabetes and viruses: The enterovirus link to type 1 diabetes: Critical review of human studies. Clin. Exp Immunol., 2012; 168: 12-23
- Wen L., Ley R.E., Volchkov P.Y., Stranges P.B., Avanesyan L., Stonebraker A.C., Hu C., Wong F.S., Szot G.L., Bluestone J.A. i wsp.: Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature, 2008; 455: 1109-1113
- Sepa A., Wahlberg J., Vaarala O., Frodi A., Ludvigsson J.: Psychological stress may induce diabetes-related autoimmunity in infancy. Diabetes Care, 2005; 28: 290-295
- Bach J.F., Chatenoud L.: The hygiene hypothesis: An explanation for the increased frequency of insulin-dependent diabetes. Cold Spring Harb. Perspect. Med., 2012; 2: a007799
- Frederiksen B., Kroehl M., Lamb M.M., Seifert J., Barriga K., Eisenbarth G.S., Rewers M., Norris J.M.: Infant exposures and development of type 1 diabetes mellitus: The diabetes autoimmunity study in the young (DAISY). JAMA Pediatr., 2013; 167: 808-815
- Zipitis C.S., Akobeng A.K.: Vitamin D supplementation in early childhood and risk of type 1 diabetes: A systematic review and meta-analysis. Arch. Dis. Child., 2008; 93: 512-517
- Norris J.M., Yin X., Lamb M.M., Barriga K., Seifert J., Hoffman M., Orton H.D., Barón A.E., Clare-Salzler M., Chase H.P. i wsp.: Omega-3 polyunsaturated fatty acid intake and islet autoimmunity in children at increased risk for type 1 diabetes. JAMA, 2007; 298: 1420-1428
- Hemminki K., Liu X., Försti A., Sundquist J., Sundquist K., Ji J.: Subsequent type 2 diabetes in patients with autoimmune disease. Sci. Rep., 2015; 5: 13871
- Toulis K., Tsekmekidou X., Potolidis E., Didangelos T., Gotzamani-Psarrakou A., Zebekakis P., Daniilidis M., Yovos J., Kotsa K.: Thyroid autoimmunity in the context of type 2 diabetes mellitus: Implications for vitamin D. Int. J. Endocrinol., 2015; 2015: 710363
- Kizilgul M., Ozcelik O., Beysel S., Akinci H., Kan S., Ucan B., Apaydin M., Cakal E.: Screening for celiac disease in poorly controlled type 2 diabetes mellitus: Worth it or not? BMC Endocr. Disord., 2017; 17: 62
- Cao Y.L., Zhang F.Q., Hao F.Q.: Th1/Th2 cytokine expression in diabetic retinopathy. Genet. Mol. Res., 2016; 15: 15
- Sathyapalan T., Atkin S.L.: Is there a role for immune and antiinflammatory therapy in type 2 diabetes? Minerva Endocrinol., 2011; 36: 147-156
- Bułdak Ł., Łabuzek K., Bułdak R.J., Kozłowski M., Machnik G., Liber S., Suchy D., Duława-Bułdak A., Okopień B.: Metformin affects macrophages’ phenotype and improves the activity of glutathione peroxidase, superoxide dismutase, catalase and decreases malondialdehyde concentration in a partially AMPK-independent manner in LPS-stimulated human monocytes/macrophages. Pharmacol. Rep., 2014; 66: 418-429
- Xu X., Lin S., Chen Y., Li X., Ma S., Fu Y., Wei C., Wang C., Xu W.: The effect of metformin on the expression of GPR109A, NF-κB and IL-1β in peripheral blood leukocytes from patients with type 2 diabetes mellitus. Ann. Clin. Lab. Sci., 2017; 47: 556-562
- Herder C., Dalmas E., Böni-Schnetzler M., Donath M.Y.: The IL-1 pathway in type 2 diabetes and cardiovascular complications. Trends Endocrinol. Metab., 2015; 26: 551-563
- Ridker P.M., Everett B.M., Thuren T., MacFadyen J.G., Chang W.H., Ballantyne C., Fonseca F., Nicolau J., Koenig W., Anker S.D. i wsp.: Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med., 2017; 377: 1119-1131
- McCaughtry T.M., Hogquist K.A.: Central tolerance: What have we learned from mice? Semin. Immunopathol., 2008; 30: 399-409
- Gianchecchi E., Delfino D.V., Fierabracci A.: NK cells in autoimmune diseases: Linking innate and adaptive immune responses. Autoimmun. Rev., 2018; 17: 142-154
- Goodnow C.C., Sprent J., Fazekas de St Groth B., Vinuesa C.G.: Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature, 2005; 435: 590-597
- Fontenot J.D., Gavin M.A., Rudensky A.Y.: Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol., 2003; 4: 330-336
- Okubo Y., Torrey H., Butterworth J., Zheng H., Faustman D.L.: Treg activation defect in type 1 diabetes: Correction with TNFR2 agonism. Clin. Transl. Immunology, 2016; 5: e56
- Wang M., Chen F., Wang J., Zeng Z., Yang Q., Shao S.: Th17 and Treg lymphocytes in obesity and Type 2 diabetic patients. Clin. Immunol., 2018; 197: 77-85
- El-Shabrawy R.M., Ahmed A.M., Selim F.O., Said N.M.: Association between CD4+, CD25+, FOXP3+ regulatory T-cells and cardiovascular complications in diabetic patients type 1. Egypt. J. Immunol., 2019; 26: 129-139
- Abouzeid S., Sherif N.: Role of alteration in Treg/Th17 cells’ balance in nephropathic patients with Type 2 diabetes mellitus. Electron. Physician., 2015; 7: 1613-1618
- Pelanda R., Piccirillo C.A.: Tolerance, immune regulation, and autoimmunity: Cells and cytokines that make a difference. Curr. Opin. Immunol., 2008; 20: 629-631
- Abdel-Moneim A., Bakery H.H., Allam G.: The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus. Biomed. Pharmacother., 2018; 101: 287-292
- Qiu A.W., Liu Q.H., Wang J.L.: Blocking IL-17A alleviates diabetic retinopathy in rodents. Cell Physiol. Biochem., 2017; 41: 960-972
- Lavoz C., Rayego-Mateos S., Orejudo M., Opazo-Ríos L., Marchant V., Marquez-Exposito L., Tejera-Muñoz A., Navarro-González J.F., Droguett A., Ortiz A. i wsp.: Could IL-17A be a novel therapeutic target in diabetic nephropathy? J. Clin. Med., 2020; 9: 272
- Cortvrindt C., Speeckaert R., Moerman A., Delanghe J.R., Speeckaert M.M.: The role of interleukin-17A in the pathogenesis of kidney diseases. Pathology, 2017; 49: 247-258
- Gauci M.L., Boudou P., Baroudjian B., Vidal-Trecan T., Da Meda L., Madelaine-Chambrin I., Basset-Seguin N., Bagot M., Pages C., Mourah S. i wsp.: Occurrence of type 1 and type 2 diabetes in patients treated with immunotherapy (anti-PD-1 and/or anti-CTLA-4) for metastatic melanoma: A retrospective study. Cancer Immunol. Immunother., 2018; 67: 1197-1208
- Parenti A., Pala L., Paccosi S., Rotella C.M.: Potential role for dendritic cells in endothelial dysfunction, diabetes and cardiovascular disease. Curr. Pharm. Des., 2017; 23: 1435-1444
- Mráz M., Cinkajzlová A., Kloučková J., Lacinová Z., Kratochvílová H., Lipš M., Pořízka M., Kopecký P., Lindner J., Kotulák T. i wsp.: Dendritic cells in subcutaneous and epicardial adipose tissue of subjects with type 2 diabetes, obesity, and coronary artery disease. Mediators Inflamm., 2019; 2019: 5481725
- Marca V., Gianchecchi E., Fierabracci A.: Type 1 diabetes and its multi-factorial pathogenesis: The putative role of NK cells. Int. J. Mol. Sci., 2018; 19: 794
- Chiba H., Fukui A., Fuchinoue K., Funamizu A., Tanaka K., Mizunuma H.: Expression of natural cytotoxicity receptors on and intracellular cytokine production by NK cells in women with gestational diabetes mellitus. Am. J. Reprod. Immunol., 2016; 75: 529538
- Lobo T.F., Borges C.M., Mattar R., Gomes C.P., de Angelo A.G., Pendeloski K.P., Daher S.: Impaired Treg and NK cells profile in overweight women with gestational diabetes mellitus. Am. J. Reprod. Immunol., 2018; 79: e12810
- Tylutka A., Zembroń-Łacny A.: Starzenie się układu immunologicznego i jego konsekwencje dla zdrowia. Postępy Hig. Med. Dośw., 2020; 74: 259-270
- Wańkowicz-Kalińska A.: Zjawiska autoimmunizacyjne. W: Immunologia, red.: J. Gołąb, M. Jakóbisiak, W. Lasek, T. Stokłosa. PWN, Warszawa 2012, 360-362
- Nikolov A., Tzekova M., Blazhev A.: Relationship between lipid indices, type IV collagen turnover and the development of microvascular complications in diabetic patients with arterial hypertension. Folia Med., 2019; 61: 231-239
- Attawia M.A., Nayak R.C.: Circulating antipericyte autoantibodies in diabetic retinopathy. Retina, 1999; 19: 390-400
- Nayak R.C., Agardh C.D., Kwok M.G., Stjernquist H., Farthing-Nayak P.J., Agardh E.: Circulating anti-pericyte autoantibodies are present in type 2 diabetic patients and are associated with non-proliferative retinopathy. Diabetologia, 2003; 46: 511-513
- Zhang L., Li Y., Payne J., Srivastava S., Fan X., Fung J., Li X., Kern T.S., Lin F.: Presence of retinal pericyte-reactive autoantibodies in diabetic retinopathy patients. Sci. Rep., 2016; 6: 20341
- Fredrikson G.N., Anand D.V., Hopkins D., Corder R., Alm R., Bengtsson E., Shah P.K., Lahiri A., Nilsson J.: Associations between autoantibodies against apolipoprotein B-100 peptides and vascular complications in patients with type 2 diabetes. Diabetologia, 2009; 52: 1426-1433
- Vavuli S., Salonurmi T., Loukovaara S., Nissinen A.E., Savolainen M.J., Liinamaa M.J.: Elevated levels of plasma IgA autoantibodies against oxidized LDL found in proliferative diabetic retinopathy but not in nonproliferative retinopathy. J. Diabetes Res., 2016; 2016: 2614153
- Sinha S., Saxena S., Das S., Prasad S., Bhasker S.K., Mahdi A.A., Kruzliak P.: Antimyeloperoxidase antibody is a biomarker for progression of diabetic retinopathy. J. Diabetes Complications, 2016; 30: 700-704
- Yoshitake S., Murakami T., Suzuma K., Yoshitake T., Uji A., Morooka S., Dodo Y., Fujimoto M., Shan Y., Fort P.E. i wsp.: Antifumarase antibody promotes the dropout of photoreceptor inner and outer segments in diabetic macular oedema. Diabetologia, 2019; 62: 504-516
- Türk A., Mollamehmetoğlu S., Alver A., Menteşe A., Nuhoğlu I., Erem C., Imamoğlu H.I.: The relationship between serum carbonic anhydrase I-II autoantibody levels and diabetic retinopathy in type 1 diabetes patients. Turk. J. Ophthalmol., 2017; 47: 85-88
- Nakaizumi A., Fukumoto M., Kida T., Suzuki H., Morishita S., Satou T., Oku H., Ikeda T., Nakamura K.: Measurement of serum and vitreous concentrations of anti-type II collagen antibody in diabetic retinopathy. Clin. Ophthalmol., 2015; 9: 543-547
- Lopes-Virella M.F., Hunt K.J., Baker N.L., Virella G., VADT Group of Investigators: High levels of AGE-LDL, and of IgG antibodies reacting with MDA-lysine epitopes expressed by oxLDL and MDALDL in circulating immune complexes predict macroalbuminuria in patients with type 2 diabetes. J. Diabetes Complications, 2016; 30: 693-699
- Virella G., Carter R.E., Saad A., Crosswell E.G., Game B.A., DCCT/EDIC Study Group, Lopes-Virella M.F.: Distribution of IgM and IgG antibodies to oxidized LDL in immune complexes isolated from patients with type 1 diabetes and its relationship with nephropathy. Clin. Immunol., 2008; 127: 394-400
- Zimering M.B., Zhang J.H., Guarino P.D., Emanuele N., McCullough P.A., Fried L.F., Investigators for the VA NEPHRON-D: Endothelial cell autoantibodies in predicting declining renal function, end-stage renal disease, or death in adult type 2 diabetic nephropathy. Front. Endocrinol., 2014; 5: 128
- Ge S., Xie J., Zheng L., Yang L., Zhu H., Cheng X., Shen F.: Associations of serum anti-ganglioside antibodies and inflammatory markers in diabetic peripheral neuropathy. Diabetes Res. Clin. Pract., 2016; 115: 68-75
- Menichella D.M., Jayaraj N.D., Wilson H.M., Ren D., Flood K., Wang X.Q., Shum A., Miller R.J., Paller A.S.: Ganglioside GM3 synthase depletion reverses neuropathic pain and small fiber neuropathy in diet-induced diabetic mice. Mol. Pain, 2016; 12: 1744806916666284
- Ejskjaer N., Arif S., Dodds W., Zanone M.M., Vergani D., Watkins P.J., Peakman M.: Prevalence of autoantibodies to autonomic nervous tissue structures in type 1 diabetes mellitus. Diabet. Med.; 1999; 16: 544-549
- Gottumukkala R.V., Lv H., Cornivelli L., Wagers A.J., Kwong R.Y., Bronson R., Stewart G.C., Schulze P.C., Chutkow W., Wolpert H.A. i wsp.: Myocardial infarction triggers chronic cardiac autoimmunity in type 1 diabetes. Sci. Transl. Med., 2012; 4: 138ra80
- Hoffman W.H., Sharma M., Cihakova D., Talor M.V., Rose N.R., Mohanakumar T., Passmore G.G.: Cardiac antibody production to self-antigens in children and adolescents during and following the correction of severe diabetic ketoacidosis. Autoimmunity, 2016; 49: 188-196
- Roth B., Berntorp K., Ohlsson B.: The expression of serum antibodies against gonadotropin-releasing hormone (GnRH1), progonadoliberin-2, luteinizing hormone (LH), and related receptors in patients with gastrointestinal dysfunction or diabetes mellitus. Drug Target Insights, 2014; 8: 45-50
- Rizzo P., Pitocco D., Zaccardi F., Di Stasio E., Strollo R., Rizzi A., Scavone G., Costantini F., Galli M., Tinelli G. i wsp.: Autoantibodies to post-translationally modified type I and II collagen in Charcot neuroarthropathy in subjects with type 2 diabetes mellitus. Diabetes Metab. Res. Rev., 2017; 33: e2839
- Xiao X., Ma B., Dong B., Zhao P., Tai N., Chen L., Wong F.S., Wen L.: Cellular and humoral immune responses in the early stages of diabetic nephropathy in NOD mice. J. Autoimmun., 2009; 32: 85-93
- Nicoloff G., Blazhev A., Petrova C., Christova P.: Circulating immune complexes among diabetic children. Clin. Dev. Immunol., 2004; 11: 61-66
- Li T., Yu Z., Qu Z., Zhang N., Crew R., Jiang Y.: Decreased number of CD19+CD24hiCD38hi regulatory B cells in diabetic nephropathy. Mol. Immunol., 2019; 112: 233-239
- Zhang N., Tai J., Qu Z., Zhang Z., Zhao S., He J., Zhang S., Jiang Y.: Increased CD4+CXCR5+ T follicular helper cells in diabetic nephropathy. Autoimmunity, 2016; 49: 405-413
- Cameron N.E., Eaton S.E., Cotter M.A., Tesfaye S.: Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia, 2001; 44: 1973-1988
- Elzinga S., Murdock B.J., Guo K., Hayes J.M., Tabbey M.A., Hur J., Feldman E.L.: Toll-like receptors and inflammation in metabolic neuropathy; a role in early versus late disease? Exp. Neurol., 2019; 320: 112967
- Janahi N.M., Santos D., Blyth C., Bakhiet M., Ellis M.: Diabetic peripheral neuropathy, is it an autoimmune disease? Immunol. Lett., 2015;168: 73-79
- Zanone M.M., Raviolo A., Coppo E., Trento M., Trevisan M., Cavallo F., Favaro E., Passera P., Porta M., Camussi G.: Association of autoimmunity to autonomic nervous structures with nerve function in patients with type 1 diabetes: A 16-year prospective study. Diabetes Care, 2014; 37: 1108-1115
- Schnell O., Schwarz A., Muhr-Becker D., Standl E.: Autoantibodies against autonomic nervous tissues in type 2 diabetes mellitus: No association with cardiac autonomic dysfunction. Exp. Clin. Endocrinol. Diabetes, 2000; 108: 181-186
- Łukawska-Tatarczuk M., Mrozikiewicz-Rakowska B., Franek E., Czupryniak L.: Podłoże molekularne niewydolności serca w cukrzycy – nowe możliwości terapeutyczne. Postępy Hig. Med. Dośw., 2020; 74: 452-463
- Lv H., Havari E., Pinto S., Gottumukkala R.V., Cornivelli L., Raddassi K., Matsui T., Rosenzweig A., Bronson R.T., Smith R. i wsp.: Impaired thymic tolerance to α-myosin directs autoimmunity to the heart in mice and humans. J. Clin. Invest., 2011; 121: 1561-1573
- Sousa G.R., Pober D., Galderisi A., Lv H., Yu L., Pereira A.C., Doria A., Kosiborod M., Lipes M.A.: Glycemic control, cardiac autoimmunity, and long-term risk of cardiovascular disease in type 1 diabetes mellitus. Circulation, 2019; 139: 730-743
- Tomaszewska A., Mrozikiewicz-Rakowska B., Czupryniak L.: Diabetic enteropathy – still undefeated? Clin. Diabetology, 2017; 6: 105-110
- D’Addio F., La Rosa S., Maestroni A., Jung P., Orsenigo E., Ben Nasr M., Tezza S., Bassi R., Finzi G., Marando A. i wsp.: Circulating IGF-I and IGFBP3 levels control human colonic stem cell function and are disrupted in diabetic enteropathy. Cell Stem Cell, 2015; 17: 486-498
- Bereket A., Lang C.H., Wilson T.A.: Alterations in the growth hormone-insulin-like growth factor axis in insulin dependent diabetes mellitus. Horm. Metab. Res., 1999; 31: 172-181