Have a personal or library account? Click to login
Opportunities for the Use of Post-Production Raw Materials of the Fruit and Vegetable Industry in the Agri-Food Sector: A Review Cover

Opportunities for the Use of Post-Production Raw Materials of the Fruit and Vegetable Industry in the Agri-Food Sector: A Review

Open Access
|Jun 2025

References

  1. Agcam, E., Akyıldız, A., Kamat, S., & Balasubramaniam, V. M. (2021). Bioactive compounds extraction from the black carrot pomace with assistance of high pressure processing: An optimization study. Waste and Biomass Valorization, 12, 1-19. https://doi.org/10.1007/s12649-021-01431-z.
  2. Ahmad, T., Masoodi, F. A., Rather, S. A., Wani, S. M., & Gull, A. (2019). Supercritical fluid extraction: A review. Journal of Biological and Chemical Chronicles, 5(1), 114-122. http://dx.doi.org/10.33980/jbcc.2019.v05i01.019.
  3. Alexandre, E. M., Araújo, P., Duarte, M. F., de Freitas, V., Pintado, M., & Saraiva, J. A. (2017). Experimental design, modeling, and optimization of high-pressure-assisted extraction of bioactive compounds from pomegranate peel. Food and Bioprocess Technology, 10, 886-900. http://dx.doi.org/10.1007/s11947-017-1867-6.
  4. Ameer, K., Shahbaz, H. M., & Kwon, J. H. (2017). Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Comprehensive reviews in food science and food safety, 16(2), 295-315. https://doi.org/10.3390/molecules30061326.
  5. Bagade, S. B., & Patil, M. (2021). Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: a review. Critical Reviews in Analytical Chemistry, 51(2), 138-149. https://doi.org/10.1080/10408347.2019.1686966.
  6. Bakshi, M. P. S., Wadhwa, M., & Makkar, H. P. (2016). Waste to worth: vegetable wastes as animal feed. Centre for Agriculture and Bioscience International Reviews, 2016 1-26. https://doi.org/10.1079/PAVSNNR201611012.
  7. Baltacıoğlu, C., Baltacıoğlu, H., Okur, İ., Yetişen, M., & Alpas, H. (2024). Recovery of phenolic compounds from peach pomace using conventional solvent extraction and different emerging techniques. Journal of Food Science, 89(3), 1672-1683. https://doi.org/10.1111/1750-3841.16972.
  8. Bao, Y., Reddivari, L., & Huang, J. Y. (2020a). Development of cold plasma pretreatment for improving phenolics extractability from tomato pomace. Innovative Food Science & Emerging Technologies, 65, 102445. https://doi.org/10.1016/j.ifset.2020.102445.
  9. Bao, Y., Reddivari, L., & Huang, J. Y. (2020b). Enhancement of phenolic compounds extraction from grape pomace by high voltage atmospheric cold plasma. Lebensmittel-Wissenschaft & Technologie, 133, 109970. https://doi.org/10.1016/j.lwt.2020.109970.
  10. Belwal, T., Chemat, F., Venskutonis, P. R., Cravotto, G., Jaiswal, D. K., Bhatt, I. D., ... & Luo, Z. (2020). Recent advances in scaling-up of non-conventional extraction techniques: Learning from successes and failures. TrAC Trends in Analytical Chemistry, 127, 115895. https://doi.org/10.1016/j.trac.2020.115895.
  11. Bhushan, S., Kalia, K., Sharma, M., Singh, B., & Ahuja, P.S. (2008).Processing of apple pomace for bioactive molecules. Critical Reviews in Biotechnology, 28, 285–296. https://doi.org/10.1080/07388550802368895.
  12. Bilea, F., Garcia-Vaquero, M., Magureanu, M., Mihaila, I., Mildažienė, V., Mozetič, M., ... & Žūkienė, R. (2024). Non-Thermal Plasma as Environmentally-Friendly Technology for Agriculture: A Review and Roadmap. Critical Reviews in Plant Sciences, 43(6), 428-486. https://doi.org/10.1080/07352689.2024.2410145.
  13. Bitwell, C., Indra, S. S., Luke, C., & Kakoma, M. K. (2023). A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Scientific African, 19, e01585. https://doi.org/10.1016/j.sciaf.2023.e01585.
  14. Cao, X., Wang, C., Pei, H., & Sun, B. (2009). Separation and identification of polyphenols in apple pomace by high-speed counter-current chromatography and high-performance liquid chromatography coupled with mass spectrometry. Journal of Chromatography A, 1216(19), 4268-4274. https://doi.org/10.1016/j.chroma.2009.01.046.
  15. Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560. https://doi.org/10.1016/j.ultsonch.2016.06.035.
  16. Cravotto, G., Binello, A., Merizzi, G., & Avogadro, M. (2004). Improving solvent‐free extraction of policosanol from rice bran by high‐intensity ultrasound treatment. European Journal of Lipid Science and Technology, 106(3), 147-151. https://doi.org/10.1002/ejlt.200300914.
  17. de Andrade Lima, M., Kestekoglou, I., Charalampopoulos, D., & Chatzifragkou, A. (2019). Supercritical fluid extraction of carotenoids from vegetable waste matrices. Molecules, 24(3), 466. https://doi.org/10.3390/molecules24030466.
  18. De Castro, M. L., & Priego-Capote, F. (2010). Soxhlet extraction: Past and present panacea. Journal of chromatography A, 1217(16), 2383-2389.
  19. de Corato, U., De Bari, I., Viola, E., and Pugliese, M. (2018). Assessing the main opportunities of integrated biorefining from agro-bioenergy co/by-products and agroindustrial residues into highvalue added products associated to some emerging markets: a review. Renewable and Sustainable Energy Reviews, 88, 326–346. https://doi.org/10.1016/j.rser.2018.02.041.
  20. Fritsch, C., Staebler, A., Happel, A., Cubero Márquez, M. A., Aguiló-Aguayo, I., Abadias, M., ... & Belotti, G. (2017). Processing, valorization and application of bio-waste derived compounds from potato, tomato, olive and cereals: A review. Sustainability, 9(8), 1492. https://doi.org/10.3390/su9081492.
  21. Geow, C. H., Tan, M. C., Yeap, S. P., & Chin, N. L. (2021). A review on extraction techniques and its future applications in industry. European Journal of Lipid Science and Technology, 123(4), 2000302. https://doi.org/10.1002/ejlt.202000302.
  22. Ghaly, A.E.; Alkoaik, F.; Snow, A. (2006). Inactivation of Botrytis cinerea during thermophilic composting of greenhouse tomato plant residues. Biotechnology and Applied Biochemistry, 133, 59–75. https://doi.org/10.1385/abab:133:1:59.
  23. Gil-Sánchez, I., Cueva, C., Sanz-Buenhombre, M., Guadarrama, A., Moreno-Arribas, M. V., & Bartolomé, B. (2018). Dynamic gastrointestinal digestion of grape pomace extracts: Bioaccessible phenolic metabolites and impact on human gut microbiota. Journal of Food Composition and Analysis, 68, 41-52. https://doi.org/10.1016/j.jfca.2017.05.005.
  24. Gowe, C. (2015). Review on potential use of fruit and vegetables by-products as a valuable source of natural food additives. Food Science and Quality Management, 45(1), 47-61.
  25. Grassino, A. N., Ostojić, J., Miletić, V., Djaković, S., Bosiljkov, T., Zorić, Z., ... & Brnčić, M. (2020). Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste. Innovative Food Science and Emerging Technologies, 64, 102424. https://doi.org/10.1016/j.ifset.2020.102424.
  26. Gupta, K. K., & Routray, W. (2025). Cold plasma: A nonthermal pretreatment, extraction, and solvent activation technique for obtaining bioactive compounds from agro-food industrial biomass. Food Chemistry, 472, 142960. https://doi.org/10.1016/j.foodchem.2025.142960.
  27. Habeeb, A. A. M., Gad, A. E., El-Tarabany, A. A., Mustafa, M. M., & Atta, M. A. A. (2017). Using of sugar beet pulp by-product in farm animals feeding. International Journal of Scientific & Technology Research, 3, 107-120. https://doi.org/10.32628/IJSRST1733181.
  28. Heydari, M., Carbone, K., Gervasi, F., Parandi, E., Rouhi, M., Rostami, O., ... & Mohammadi, R. (2023). Cold plasma-assisted extraction of phytochemicals: a review. Foods, 12(17), 3181. https://doi.org/10.3390/foods12173181.
  29. Hosseini, S. S., Khodaiyan, F., Kazemi, M., & Najari, Z. (2019). Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method. International Journal of Biological Macromolecules, 125, 621-629. https://doi.org/10.1016/j.ijbiomac.2018.12.096.
  30. Iftikhar, M., Wahab, S., ul Haq, N., Malik, S. N., Amber, S., Taran, N. U., & Rehman, S. U. (2019). 12. Utilization of citrus plant waste (peel) for the development of food product. Pure and Applied Biology (PAB), 8(3), 1991-1998. http://dx.doi.org/10.19045/bspab.2019.80143.
  31. Jalal, H., Giammarco, M., Lanzoni, L., Akram, M. Z., Mammi, L. M., Vignola, G., ... & Fusaro, I. (2023). Potential of fruits and vegetable by-products as an alternative feed source for sustainable ruminant nutrition and production: a review. Agriculture, 13(2), 286. https://doi.org/10.3390/agriculture13020286.
  32. Janiszewska, E., & Witrowa-Rajchert, D. (2005). Ekstrakcja nadkrytyczna w przemyśle spożywczym. Żywność Nauka Technologia Jakość, 12(4), 5-16.
  33. Jozwiak, D., Krasowska, M., Kowczyk-Sadowy, M., & Dolzynska, M. (2019). Ocena wybranych właściwości fizykochemicznych mieszanek paszowych z produktów ubocznych z przetwórstwa rolnospożywczego. Technika Rolnicza Ogrodnicza Leśna, 4, 21-23.
  34. Jun, X. (2013). High-pressure processing as emergent technology for the extraction of bioactive ingredients from plant materials. Critical Reviews in Food Science and Nutrition, 53(8), 837-852. https://doi.org/10.1080/10408398.2011.561380.
  35. Kaderides, K., Papaoikonomou, L., Serafim, M., & Goula, A. M. (2019). Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chemical Engineering and Processing-Process Intensification, 137, 1-11. https://doi.org/10.1016/j.cep.2019.01.006.
  36. Kakabouki, I., Efthimiadou, A., Folina, A., Zisi, C., & Karydogianni, S. (2020). Effect of different tomato pomace compost as organic fertilizer in sweet maize crop. Communications in Soil Science and Plant Analysis, 51(22), 2858-2872. https://doi.org/10.1080/00103624.2020.1853148.
  37. Kammerer, D. R., Kammerer, J., Valet, R., & Carle, R. (2014). Recovery of polyphenols from the byproducts of plant food processing and application as valuable food ingredients. Food Research International, 65, 2–12. https://doi.org/10.1016/j.foodres.2014.06.012.
  38. Kazemi, M., Khodaiyan, F., & Hosseini, S. S. (2019). Eggplant peel as a high potential source of high methylated pectin: Ultrasonic extraction optimization and characterization. Lebensmittel-Wissenschaft & Technologie, 105, 182-189. https://doi.org/10.1016/j.lwt.2019.01.060.
  39. Khan, S. A., Aslam, R., & Makroo, H. A. (2019). High pressure extraction and its application in the extraction of bio‐active compounds: A review. Journal of Food Process Engineering, 42(1), e12896. https://doi.org/10.1111/jfpe.12896.
  40. Konrade, D., Klava, D., & Gramatina, I. (2017).Cereal crispbread improvement with dietary fibre from apple by-products. In CBU International Conference Proceedings, 5, 1143–1148. https://doi.org/10.12955/cbup.v5.1085.
  41. Koubaa, M., Barba, F. J., Grimi, N., Mhemdi, H., Koubaa, W., Boussetta, N., & Vorobiev, E. (2016). Recovery of colorants from red prickly pear peels and pulps enhanced by pulsed electric field and ultrasound. Innovative Food Science and Emerging Technologies, 37, 336-344. https://doi.org/10.1016/j.ifset.2016.04.015.
  42. Kruczek, M., Gumul, D., IvaniÅ, E., & GambuÅ, H. (2017). Industrial apple pomace by-products as a potential source of pro-health compounds in functional food. Journal of Microbiology, Biotechnology and Food Sciences, 7(1), 22-26. https://doi.org/10.15414/jmbfs.2017.7.1.22-26.
  43. Kuchtová, V., Karovičová, J., Kohajdová, Z., & Minarovičová, L. (2016). Chemical composition and functional properties of pumpkin pomace-incorporated crackers. Acta Chimica Slovaca, 9(1), 54-57. https://doi.org/10.1515/acs-2016-0009.
  44. Kumar, K., Srivastav, S., & Sharanagat, V. S. (2021). Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics Sonochemistry, 70, 105325. https://doi.org/10.1016/j.ultsonch.2020.105325
  45. Kwiatkowski, M., Terebun, P., Kučerová, K., Tarabová, B., Kovalová, Z., Lavrikova, A., ... & Pawłat, J. (2023). Evaluation of Selected Properties of Dielectric Barrier Discharge Plasma Jet. Materials, 16(3), 1167. https://doi.org/10.3390/ma16031167.
  46. López-Pérez, J. A., Roubtsova, T., & Ploeg, A. (2005). Effect of three plant residues and chicken ma nure used as biofumigants at three temperatures on Meloidogyne incognita infestation of tomato in greenhouse experiments. Journal of Nematology, 37(4), 489-494. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2620994/.
  47. Lu,Y.,& Foo,L.Y.(2000).Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chemistry, 68, 81–85. https://doi.org/10.1016/S0308-8146(99)00167-3
  48. Łusiak, P., Mazur, J., Sobczak, P., Zawiślak, K., & Panasiewicz, M. (2023). The use of carrot and apple pomace in the production of healthy snack bars. Agricultural Engineering, 27(1), 289-300. https://doi.org/10.2478/agriceng-2023-0021.
  49. Mahmoud, M. H., Abu-Salem, F. M., & Azab, D. E. S. H. (2022). A comparative study of pectin green extraction methods from apple waste: Characterization and functional properties. International Journal of Food Science, 2022(1), 2865921. https://doi.org/10.1155/2022/2865921.
  50. Mazurek, P. A., Pawłat, J., & Kwiatkowski, M. (2015). Badanie zaburzeń przewodzonych w torze zasilania reaktorów BDB i GlidArc. Przegląd Elektrotechniczny, 91(11), 50-53. https://doi.org/10.15199/48.2015.11.15.
  51. Mohsen, M. K., Ali, M. F., Gaafar, H. M., Al-Sakka, T. S., Aboelenin, S. M., Soliman, M. M., & Dawood, M. A. (2021). Impact of dry sugar beet pulp on milk production, digestibility traits, and blood constituents of dairy holstein cows. Animals, 11(12), 3496. https://doi.org/10.3390/ani11123496.
  52. Naliyadhara, N., Kumar, A., Girisa, S., Daimary, U. D., Hegde, M., & Kunnumakkara, A. B. (2022). Pulsed electric field (PEF): Avant-garde extraction escalation technology in food industry. Trends in Food Science & Technology, 122, 238-255. https://doi.org/10.1016/j.tifs.2022.02.019.
  53. Niedziółka, I., & Zaklika, B. (2016). Assessment of physical properties of briquettes made of mixtures of selected plant raw materials and post-fermentation waste. Agricultural Engineering, 20(1), 101-110. https://doi.org/10.1515/agriceng-2016-0010.
  54. Niedźwiedź, I., Waśko, A., Pawłat, J., & Polak-Berecka, M. (2019). The state of research on antimicrobial activity of cold plasma. Polish Journal of Microbiology, 68(2), 153-164. https://doi.org/10.33073/pjm-2019-028.
  55. Nishad, J., Koley, T. K., Varghese, E., & Kaur, C. (2018). Synergistic effects of nutmeg and citrus peel extracts in imparting oxidative stability in meat balls. Food Research International, 106, 1026-1036. https://doi.org/10.1016/j.foodres.2018.01.075.
  56. Nour, A. H., Oluwaseun, A. R., Nour, A. H., Omer, M. S., & Ahmed, N. (2021). Microwave-assisted extraction of bioactive compounds. Microwave heating. Electromagnetic fields causing thermal and non-thermal effects. 1-31. https://doi.org/10.5772/INTECHOPEN.96092.
  57. Nowosad, K. (2022). Zastosowanie pulsacyjnego pola elektrycznego (PEF) jako zabegu wspomagającego ekstrację. Wiadomości Chemiczne, 76(3-4), 207-220.
  58. Nowosad, K., & Sujka, M. (2019). Niekonwencjonalne metody ekstrakcji: ekstrakcja ekologiczna. Wiadomości Chemiczne, 76(9-10), 465-479.
  59. Pagano, I., Campone, L., Celano, R., Piccinelli, A. L., & Rastrelli, L. (2021). Green non-conventional techniques for the extraction of polyphenols from agricultural food by-products: A review. Journal of Chromatography A, 1651, 462295. https://doi.org/10.1016/j.chroma.2021.462295.
  60. Pataro, G., Carullo, D., & Ferrari, G. (2019). Effect of PEF pre-treatment and extraction temperature on the recovery of carotenoids from tomato wastes. Chemical Engineering Transactions, 75, 139-144. https://dx.doi.org/10.3303/CET1975024.
  61. Pellicanò, T. M., Sicari, V., Loizzo, M. R., Leporini, M., Falco, T., & Poiana, M. (2019). Optimizing the supercritical fluid extraction process of bioactive compounds from processed tomato skin byproducts. Food Science and Technology, 40, 692-697. https://doi.org/10.1590/fst.16619.
  62. Plawgo, M., Kocira, S., & Bohata, A. (2024). Multi-objective optimization of the green extraction conditions of bio-active compounds from a Levisticum officinale WDJ Koch: Pareto optimality and compromise solutions for process management. Agricultural Engineering, 28(1), 137-165. https://doi.org/10.2478/agriceng-2024-0010.
  63. Ranjha, M. M. A., Kanwal, R., Shafique, B., Arshad, R. N., Irfan, S., Kieliszek, M., ... & Aadil, R. M. (2021). A critical review on pulsed electric field: A novel technology for the extraction of phytoconstituents. Molecules, 26(16), 4893. https://doi.org/10.3390/molecules26164893.
  64. Rasul, M. G. (2018). Conventional extraction methods use in medicinal plants, their advantages and disadvantages. Int. J. Basic Sci. Appl. Comput, 2(6), 10-14. https://doi.org/10.35940/ijbsac.F0082.0612.
  65. Sacramento, J. C., & Heggs, P. J. (2009). The role of flooding in the design of vent and reflux condensers. Applied thermal engineering, 29(7), 1338-1345. https://doi.org/10.1016/j.applthermaleng.2008.04.013.
  66. Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety, 17(3), 512-531. https://doi.org/10.1111/1541-4337.12330.
  67. Sasidharan, S., Shanmugapriya, Jothy, S. L., Vijayarathna, S., Kavitha, N., Oon, C. E., ... & Kanwar, J. R. (2018). Conventional and non-conventional approach towards the extraction of bioorganic phase. Bioorganic Phase in Natural Food: An Overview, 41-57. https://doi.org/10.1007/978-3-319-74210-6_4.
  68. Shouqin, Z., Junjie, Z., & Changzhen, W. (2004). Novel high pressure extraction technology. International journal of Pharmaceutics, 278(2), 471-474. https://doi.org/10.1016/j.ijpharm.2004.02.029.
  69. Shrivastav, G., Prava Jyoti, T., Chandel, S., & Singh, R. (2024). Eco-friendly extraction: innovations, principles, and comparison with traditional methods. Separation & Purification Reviews, 1-17. https://doi.org/10.1080/15422119.2024.2381605.
  70. Sobczak, P., Zawiślak, K., Starek, A., Żukiewicz-Sobczak, W., Sagan, A., Zdybel, B., & Andrejko, D. (2020). Compaction process as a concept of press-cake production from organic waste. Sustainability, 12(4), 1567. https://doi.org/10.3390/su12041567.
  71. Spinei, M., & Oroian, M. (2022). Microwave-assisted extraction of pectin from grape pomace. Scientific Reports, 12(1), 12722. https://doi.org/10.1038/s41598-022-16858-0
  72. Starek A. (2019). Skuteczność innowacyjnych technik obróbki soków warzywnych. Polskie Towarzystwo Inżynierii Rolniczej. Kraków, 978-83-64377-30-3.
  73. Tsao, R., Yang, R., Young, J. C., & Zhu, H. (2003). Polyphenolic profiles in eight apple culti vars using high-performance liquid chromatography (HPLC). Journal of Agricultural and Food Chemistry, 51, 6347-6353. https://doi.org/10.1021/jf0346298.
  74. Umair, M., Jabbar, S., Ayub, Z., Muhammad Aadil, R., Abid, M., Zhang, J., & Liqing, Z. (2022). Recent advances in plasma technology: Influence of atmospheric cold plasma on spore inactivation. Food Reviews International, 38(sup1), 789-811. https://doi.org/10.1080/87559129.2021.1888972.
  75. Vicenssuto, G. M., & de Castro, R. J. S. (2020). Development of a novel probiotic milk product with enhanced antioxidant properties using mango peel as a fermentation substrate. Biocatalysis and Agricultural Biotechnology, 24, 101564. https://doi.org/10.1016/j.bcab.2020.101564.
  76. Wani, F. A., Rashid, R., Jabeen, A., Brochier, B., Yadav, S., Aijaz, T., ... & Dar, B. N. (2021). Valorisation of food wastes to produce natural pigments using non‐thermal novel extraction methods: a review. International Journal of Food Science & Technology, 56(10), 4823-4833. https://doi.org/10.1111/ijfs.15267.
  77. Waraczewski, R., Muszyński, S., & Sołowiej, B. G. (2022). An analysis of the plant-and animal-based hydrocolloids as byproducts of the food industry. Molecules, 27(24), 8686. https://doi.org/10.3390/molecules27248686.
  78. Xi, J., Wang, Y., Zhou, X., Wei, S., & Zhang, D. (2024). Cold plasma pretreatment technology for enhancing the extraction of bioactive ingredients from plant materials: A review. Industrial Crops and Products, 209, 117963. https://doi.org/10.1016/j.indcrop.2023.117963.
  79. Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., and Brown, P. H. (2016). Biostimulants in plant science: a global perspective. Frontiers in Plant Science, 7, 2049. 10.3389/fpls.2016.02049. https://doi.org/10.3389/fpls.2016.02049.
  80. Zhang, M., Zeng, G., Pan, Y., & Qi, N. (2018a). Difference research of pectins extracted from tobacco waste by heat reflux extraction and microwave-assisted extraction. Biocatalysis and agricultural biotechnology, 15, 359-363. https://doi.org/10.1016/j.bcab.2018.06.022.
  81. Zhang, Q. W., Lin, L. G., & Ye, W. C. (2018b). Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine, 13, 1-26. https://doi.org/10.1186/s13020-018-0177-x.
DOI: https://doi.org/10.2478/agriceng-2025-0009 | Journal eISSN: 2449-5999 | Journal ISSN: 2083-1587
Language: English
Page range: 135 - 155
Submitted on: Jan 1, 2025
Accepted on: Apr 1, 2025
Published on: Jun 19, 2025
Published by: Polish Society of Agricultural Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Aleksandra Rolewicz, Marta Krajewska, Agnieszka Starek-Wójcicka, published by Polish Society of Agricultural Engineering
This work is licensed under the Creative Commons Attribution 4.0 License.