References
- Abdallah, N.A., Prakash, C.S. and Mchughen A.G. 2015. Genome editing for crop improvement: Challenges and opportunities. GM Crops & Foods, 6, 183 – 205. DOI: 10.1080/21645698.2015.1129937.10.1080/21645698.2015.1129937503322226930114
- Abid, M., Ali, S., Qi, L.K., Zahoor, R., Tian, Z., Jiang, D., Snider, J.L. and Dai, T. 2018. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports, 4615(8), 1 – 15. DOI:10.1038/s41598-018-21441-7.10.1038/s41598-018-21441-7585467029545536
- Abobatta, W.F. 2019. Drought adaptive mechanisms of plants – a review. Advances in Agriculture and Environmental Science, 2(1), 62 – 65. DOI:10.30881/aaeoa.00022.10.30881/aaeoa.00022
- Ahmed, R.F., Irfan, M., Shakir, H.A., Khan, M. and Chen, L. 2020. Engineering drought tolerance in plants by modification of transcription and signalling factors. Biotechnology & Biotechnological Equipment, 34, 781 – 789. DOI: 10.1080/13102818.2020.1805359.10.1080/13102818.2020.1805359
- Alghabari, F. and Ihsan, M.Z. 2018. Effects of drought stress on growth, grain filling duration, yield and quality attributes of barley (Hordeum vulgare L.). Bangladesh Journal of Botany, 47(3), 421 – 428. DOI:10.3329/bjb.v47i3.38679.10.3329/bjb.v47i3.38679
- Alghabari, F., Ihsan, M.Z., Hussain, S., Aishia, G., Daur, I. 2015. Effect of Rht alleles on wheat grain yield and quality under high temperature and drought stress during booting and anthesis. Environmental Science and Pollution Research, 22(1), 15506 – 15515. DOI:10.1007/s11356-015-4724-z.10.1007/s11356-015-4724-z26006072
- Andersen, M.N., Asch, F., Wu, Y., Jensen, Ch.R., Næsted, H., Mogensen, V.O. and Koch, K.E. 2002. Soluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize. Plant Physiology, 130(2), 591 – 604. DOI:10.1104/pp.005637.10.1104/pp.00563716658912376627
- Anjum, S.A., Xie, X., Wang, L., Saleem, M.F., Man, C. and Lei, W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026 – 2032. DOI:10.5897/AJAR10.027.
- Araus, J.L., Slafer, G.A., Reynolds, M.P. and Royo, C. 2002. Plan breeding and drought in C3 cereals: What should we breed for? Annals of Botany, 89, 925 – 940. DOI:10.1093/aob/mcf049.10.1093/aob/mcf049423379912102518
- Atkinson, N.J. and Urwin, P.E. 2012. The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 63(10), 3523 – 3543. DOI:10.1093/jxb/ers100.10.1093/jxb/ers10022467407
- Anwar, A. and Kim, J.-K. 2020. Transgenic breeding approaches for improving abiotic stress tolerance: Recent progress and future perspectives. International Journal of Molecular Sciences, 21, 2695. DOI:10.3390/ijms21082695.10.3390/ijms21082695721624832295026
- Bonifacio, A., Martins, M.O., Ribeiro, C.W., Fontenele, A.V., Carvalho, F.E.L., Margis-Pinheiro, M., Silveira, J.A.G. 2011. Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress. Plant, Cell & Environment, 34(10), 1705 – 1722. DOI:10.1111/j.1365-3040.2011.02366.x.10.1111/j.1365-3040.2011.02366.x21631533
- Carey, C.C., Gorman, C.F. and Rutherford, S. 2006. Modularity and intrinsic evolvability of Hsp90-buffered change. PLOS ONE, 1(1), 1 – 6. DOI:10.1371/journal.pone.0000076.10.1371/journal.pone.0000076176235617183708
- Caverzan, A., Casassola, A. and Brammer, S.P. 2016. Antioxidant responses of wheat plants under stress. Genetics and Molecular Biology, 39(1), 1 – 6. DOI:10.1590/1678-4685-GMB-2015-0109.10.1590/1678-4685-GMB-2015-0109480739027007891
- Cheng, L., Wang, Y., He, Q., Li, H., Zhang, X. and Zhang, F. 2016. Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat Triticum aestivum L.) cultivars under dehydration and rehydration. BMC Plant Biology, 16(1), 1 – 23. DOI:10.1186/s12870-016-0871-8.10.1186/s12870-016-0871-8500638227576435
- Choudhary, M., Wani, S.H., Kumar, P., Bagaria, P.K., Rakshit, S., Roorkiwal, M. and Varshney, R.K. 2019. QTLian breeding for climate resilience in cereals: progress and prospects. Functional & Integrative Genomics, 19, 685 – 701. DOI: 10.1007/s10142-019-00684-1.10.1007/s10142-019-00684-131093800
- Danna, C.H., Bartoli, C.G., Sacco, F., Ingala, L.R., Santa-María, G.E., Guiamet, J.J. and Ugalde, R.A. 2003. Thylakoid-bound ascorbate peroxidase mutant exhibits impaired electron transport and photosynthetic activity. Plant Physiology, 132(4), 2116 – 2125. DOI:10.1104/pp.103.021717.10.1104/pp.103.02171718129512913166
- Davies, W.J., Kudoyarova, G. and Hartung, W. 2005. Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant´s response to drought. Journal of Plant Growth Regulation, 24, 285 – 295. DOI:10.1007/s00344-005-0103-1.10.1007/s00344-005-0103-1
- Daszkowska-Golec, A. and Szarejko, I. 2013. Abiotic Stress - Plant responses and applications in agriculture: The molecular basis of ABA-mediated plant response to drought. Rijeka: InTech, 418 pp. ISBN 978-953-51-1024-8.
- Di Donato, M.D. and Geisler, M. 2019. HSP90 and co-chaperones: a multitaskers’ view on plant hormone biology. FEBS Letters, 593(13), 1415 – 1430. DOI:10.1002/1873-3468.13499.10.1002/1873-3468.1349931211865
- Dikilitas, M., Simsek, E. and Roychoudhury, A. 2020. Modulation of abiotic stress tolerance through hydrogen peroxide. Chapter 7. Protective Chemical Agents in the Amelioration of Plant Abiotic Stress, 147 – 173. USA: John Wiley & Sons, Ltd. DOI:10.1002/9781119552154.ch7.10.1002/9781119552154.ch7
- Dolferus, R., Ji, X. and Richards, R.A. 2011. Abiotic stress and control of grain number in cereals. Plant Science, 181(4), 331 – 341. DOI:10.1016/j.plantsci.2011.05.015.10.1016/j.plantsci.2011.05.01521889038
- Earl, H.J. and Davis, R.F. 2003. Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agronomy Journal, 95(3), 688 – 696. DOI:10.2134/agronj2003.0688.10.2134/agronj2003.6880
- FAO. 2013. Statistical yearbook 2013. Rome: Food and Agriculture Organization of the United Nations, 307 pp. ISBN 978-92-5-107396-4.
- FAO. 2018. The impact of disasters and crises on agriculture and food security. Rome: Food and Agriculture Organization of the United Nations, 168 pp. ISBN: 978-92-5-130359-7
- Farooq, M, Wahid, A., Kobayashi, N., Fujita, D. and Basra, S.M.A. 2009. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185 – 212. DOI:10.1051/agro:2008021.10.1051/agro:2008021
- Fedoroff, N., Battisti, D.S., Beachy, R.N., Cooper, P.J.M., Fischhoff, D.A., Hodges, C.N., Knauf, V.C., Lobell, D., Mazur, B.J., Molden, D., Reynolds, M.P., Ronald, P.C., Rosegrant, M.W., Sanchez, P.A., Vonshak, A. and Zhu, J-K. 2010. Radically rethinking agriculture for the 21st century. Science, 327(5967), 833 – 834. DOI:10.1126/science.1186834.10.1126/science.1186834
- Gao, S., Xu, H., Cheng, X., Chen, M., Xu, Z., Li, L., Ye, X., Du, L., Hao, X. and Ma, Y. 2005. Improvement of wheat drought and salt tolerance by expression of a stress inducible transcription factor GmDREB of soybean (Glycine max). Chinese Science Bulletin, 50, 2714 – 2723. DOI: 10.1007/BF02899641.10.1007/BF02899641
- Garg, B.K. 2003. Nutrient uptake and management under drought: nutrient-moisture interaction. Current Agriculture, 27(1/2), 1 – 8.
- Ge, P., Hao, P., Cao, M., Guo, G., Lv, D., Subburaj, S., Li, X., Yan, X., Xiao, J., Ma, W. and Yan, Y. 2013. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways of wheat seedling growth under hydrogen peroxide stress. Proteomics, 13(20), 3046 – 3058. DOI:10.1002/pmic.201300042.10.1002/pmic.201300042
- Ghatak, A., Chaturvedi, P. and Weckwerth, W. 2017. Cereal crop proteomics: systemic analysis of crop drought stress responses towards marker-assisted selection breeding. Frontiers in Plant Science, 8(757), 1 – 25. DOI:10.3389/fpls.2017.00757.10.3389/fpls.2017.00757
- Gill, S.S., Anjum, N.A., Gill, R., Yadav, S., Hasanuzzaman, M., Fujita, M., Mishra, P., Sabat, S.C. and Tuteja, N. 2015. Su-peroxide dismutase – Mentor of abiotic stress tolerance in crop plants. Environmental Science and Pollution Research, 22, 10375 – 10394. DOI:10.1007/s11356-015-4532-5.10.1007/s11356-015-4532-5
- González, F.F., Capella, M., Ribichich, K.K., Curífn, F., Giacomelli, J.J., Ayala, F., Watson, G., Otegui, M.E. and Chan, R.L. 2019. Field-grown transgenic wheat expressing the sunflower gene HaHB4 significantly outyields the wild type. Journal of Experimental Botany, 70, 1669 – 1681. DOI:10.1093/jxb/erz037.10.1093/jxb/erz037
- Gregorová, Z., Kováčik, J., Klejdus, B., Maglovski, M., Kuna, R., Hauptvogel, P. and Matušíková, I. 2015. Drought – induced responses of physiology, metabolites, and PR proteins in Triticum aestivum. Journal of Agricultural and Food Chemistry, 63(37), 8125 – 8133. DOI:10.1021/acs. jafc.5b02951.
- Guo, H., Zhang, H., Wang, G., Wang, Ch., Wang, Y., Liu, X. and Ji, W. 2021. Identification and expression analyses of heat-shock proteins in wheat infected with powdery mildew and stripe rust. The Plant Genome, e20092, 1 – 15. DOI:10.1002/tpg2.2009210.1002/tpg2.20092
- Hamim, 2005. Photosynthesis of C3 and C4 species in response to increased CO2 concentration and drought stress. Hayati, 12(4), 131 – 138.10.1016/S1978-3019(16)30340-0
- Han, H., Tian, Z., Fan, Y., Cui, Y., Cai, J., Jiang, D., Cao, W. and Dai, T. 2015. Water-deficit treatment followed by re-watering stimulates seminal root growth associated with hormone balance and photosynthesis in wheat (Triticum aestivum L.) seedlings. Plant Growth Regulation, 77(2), 201 – 210. DOI: 10.1007/s10725-015-0053-y.10.1007/s10725-015-0053-y
- Hanin, M., Brini, F., Ebel, Ch., Toda, Y., Takeda, S. and Masmoudi, K. 2011. Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signaling & Behavior, 6(10), 1503 – 1509. DOI:10.4161/psb.6.10.17088.10.4161/psb.6.10.17088325637821897131
- Houshmand, S., Arzani, A. and Mirmohammadi-Maibody, S.A.M. 2014. Effects of salinity and drought stress on grain quality of durum wheat. Communications in Soil Science and Plant Analysis, 45(3), 297 – 308. DOI: 10.1080/00103624.2013.861911.10.1080/00103624.2013.861911
- Izanloo, A., Condon, A.G., Langridge, P., Tester, M. and Schnurbusch, T. 2008. Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. Journal of Experimental Botany, 59(12), 3327 – 3346. DOI:10.1093/jxb/ern199.10.1093/jxb/ern199252923218703496
- Jacob, P., Hirt, H. and Bendahmane, A. 2017. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal, 15(4), 405 – 414. DOI: 10.1111/pbi.12659.10.1111/pbi.12659536268727860233
- Jansen, G., Schliephake, E., Kopahnke, D. and Ordon, F. 2013. Effect of N-fertilization, fungicide treatment, seed density and abiotic stress factors on the total ß-glucan content of six-rowed winter barley (Hordeum vulgare L.). Journal of Applied Botany and Food Quality, 86(1), 180 – 184. DOI: 10.5073/JABFQ.2013.086.024.
- Javed, T., Shabbir, R., Ali, A., Afzal, I., Zaheer, U. and Gao, S.-J. 2020. Transcription factors in plant stress responses: Challenges and potential for sugarcane improvement. Plants, 9, 491. DOI:10.3390/plants9040491.10.3390/plants9040491723803732290272
- Jha, S. 2019. Transgenic approaches for enhancement of salinity stress tolerance in plants. In Singh, S.P., Upadhyay, S.K., Pandey, A., Kumar, S. (Eds.) Molecular Approaches in Plant Biology and Environmental Challenges, Energy, Environment, and Sustainability. Singapore: Springer Nature, 266 – 322. ISBN 978-981-15-0692-510.1007/978-981-15-0690-1_14
- Jiang, W., Yang, L., Yiqin, H., Zhang, H., Li, W., Chen, H., Ma, D. and Yin, J. 2019. Genome-wide identification and transcriptional expression analysis of superoxide dismutase (SOD) family in wheat (Triticum aestivum). Peer J, 19(7), 1 – 26. DOI:10.7717/peerj.8062.10.7717/peerj.8062687388031763072
- Kao, CH. 2014. Role of hydrogen peroxide in rice plants. Crop, Environment & Bioinformatics, 11(3), 1 – 10. DOI:20.1093/jxb/ert375.
- Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M. and Sharma, A. 2020. The Impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Applied Sciences, 10(16), 1 – 19. DOI:10.3390/app10165692.10.3390/app10165692
- Khadka, K., Earl, H.J., Raizada, M.N. and Navabi, A. 2020. A physio-morphological trait-based approach for breeding drought tolerant wheat. Frontiers in Plant Science, 11, article: 715. DOI:10.3389/FPLS.2020.00715.10.3389/fpls.2020.00715728628632582249
- Khan, N., Ali, S., Tariq, H., Latif, S., Yasmin, H., Mehmood, A. and Shahid, M.A. 2020. Water conservation and plant survival strategies of Rhizobacteria under drought stress. Agronomy, 10, 1683. DOI:10.3390/agronomy10111683.10.3390/agronomy10111683
- Khan, S., Anwar, S., Yu, S., Sun, M., Yang, Z. and Gao, Z.-Q. 2019. Development of drought-tolerant transgenic wheat: Achievements and limitations. International Journal of Molecular Sciences, 20, 3350. DOI:10.3390/ijms20133350.10.3390/ijms20133350665153331288392
- Klimešová, J., Holková, L. and Středa, T. 2017. The expression of dehydrin genes and the intensity of transpiration in drought-stressed maize plants. Cereal Research Communications, 45(3), 355 – 368. DOI:10.1556/0806.45.2017.017.10.1556/0806.45.2017.017
- Kole, C., Muthamilarasan, M., Henry, R. et al. 2015. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Frontiers in Plant Science, 6, article: 563. DOI:10.3389/fpls.2015.00563.10.3389/fpls.2015.00563453142126322050
- Kumar, A., Sharma, S., Chunduri, V. et al. Genome-wide identification and characterization of heat shock protein family reveals role in development and stress conditions in Triticum aestivum L. Scientific Reports, 10(7858). DOI:10.1038/s41598-020-64746-2.10.1038/s41598-020-64746-2721789632398647
- Lamaoui, M., Jemo, M., Datla, R. and Bekkaoui, F. 2018. Heat and drought stresses in crops and approaches for their mitigation. Frontiers in Chemistry, 6, article: 26. DOI:10.3389/fchem.2018.00026.10.3389/fchem.2018.00026582753729520357
- Li, Y.F., Wu, Y., Hernandez-Espinosa, N. and Peña, R.J. 2013. Heat and drought stress on durum wheat: Responses of genotypes, yield and quality parameters. Journal of Cereal Science, 57(3), 398 – 404. DOI:10.1016/j.jcs.2013.01.005.10.1016/j.jcs.2013.01.005
- Luna, C.M., Pastori, G.M., Driscoll, S., Groten, K., Bernard, S. and Foyer, Ch.H. 2005. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. Journal of Experimental Botany, 56(411), 417 – 423. DOI:10.1093/jxb/eri039.10.1093/jxb/eri03915569704
- Magallanes-López, A.M., Ammar, K., Morales-Dorantes, A., González-Santoyo, H., Crossa, C. and Guzmán, C. 2017. Grain quality traits of commercial durum wheat varieties and their relationships with drought stress and glutenins composition. Journal of Cereal Science, 75(1), 1 – 9. DOI: 10.1016/j.jcs.2017.03.005.10.1016/j.jcs.2017.03.005
- Mitra, J. 2001. Genetics and genetic improvement of drought resistance in crop plants. Current Science, 80(6), 758 – 763.
- Napolean, T., Kaul, J., Mukri, G. and Mittal, S. 2018. Genomics-enabled next-generation breeding approaches for developing system-specific drought tolerant hybrid in maize. In Luo, L., Mei, H., Tuberosa, R., Nguyen, H.T. and Lu, B. (Eds.) Crop Breeding for Drought Resistance. Lausanne: Frontiers Media, pp. 200 – 221. DOI:10.3389/fpls.2018.00361.10.3389/fpls.2018.00361590516929696027
- Ni, Z., Li, H., Zhao, Y., Peng, H., Hu, Z., Xin, M. and Sun, Q. 2018. Genetic improvement of heat tolerance in wheat: Recent progress in understanding the underlying molecular mechanisms. The Crop Journal, 6(1), 32 – 41. DOI: 10.1016/j.cj.2017.09.005.10.1016/j.cj.2017.09.005
- Nuttall, J.G., O’leary, G.J., Panozzo, J.F., Walker, C.K., Barlow, K.M. and Fitzgerald, G.J. 2017. Models of grain quality in wheat – a review. Field Crops Research, 202(12), 136 – 145. DOI:10.1016/j.fcr.2015.12.011.10.1016/j.fcr.2015.12.011
- Oladosu, Y., Rafii, M.Y., Samuel, C., Fatai, A., Magaji, U., Kareem, I., Kamarudin, Z.S., Muhammad, I. and Kolapo, K. 2019. Drought resistance in rice from conventional to molecular breeding: A review. International Journal of Molecular Sciences, 20, 3519. DOI:10.3390/ijms20143519.10.3390/ijms20143519667808131323764
- Osakabe, Y., Osakabe, K., Shinozaki, K. and Tran, L.S.P. 2014. Response of plants to water stress. Frontiers of Plant Science, 5(86), 1 – 8. DOI:10.3389/fpls.2014.00086.10.3389/fpls.2014.00086395218924659993
- Pang, Y., Liu, C., Wang, D. et al. 2020. High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat. Molecular Plant, 13(9), 1311 – 1327. DOI:10.1016/j. molp.2020.07.008.
- Parkash, V. and Singh, S. 2020. A review on potential plant-based water stress indicators for vegetable crops. Sustainability, 12(10), 3945. DOI:10.3390/su12103945.10.3390/su12103945
- Paul, S. and Roychoudhury, A. 2018. Transgenic plants for improved salinity and drought tolerance. In Gosal, S.S. and Wani, S.H. (Eds.) Biotechnologies of Crop Improvement, vol. 2. New York City: Springer International Publishing AG, pp. 141 – 181. ISBN 978-3-319-90649-2.
- Petrov, V.D. and Van Breusegem, F. 2012. Hydrogen peroxide – a central hub for information flow in plant cells. AoB Plants, 2012(4), 1 – 13. DOI:10.1093/aobpla/pls014.10.1093/aobpla/pls014336643722708052
- Prasad, P.V.V., Bheemanahalli, R. and Jagadish, S.V.K. 2017. Field crops and the fear of heat stress – Opportunities, challenges, and future directions. Field Crops Research, 200(1), 114 – 121. DOI:10.1016/j.fcr.2016.09.024.10.1016/j.fcr.2016.09.024
- Reddy, A.R., Chaitanya, K.V. and Vivekanandan, M. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161(11), 1189 – 1202. DOI:10.1016/j.jplph.2004.01.013.10.1016/j.jplph.2004.01.01315602811
- Samarah, N.H. 2005. Effects of drought stress on growth and yield of barley. Agronomy for Sustainable Development, 25, (1), 145 – 149. DOI:10.1051/agro:2004064.10.1051/agro:2004064
- Saradadevi, R., Bramley, H., Palta, J.A., Edwards, E., Siddique, K.H.M. 2015. Root biomass in the upper layer of the soil profile is related to the stomatal response of wheat as the soil dries. Functional Plant Biology, 43(1), 62 – 74. DOI: 10.1071/FP15216.10.1071/FP1521632480442
- Saradadevi, R., Palta, J.A. and Siddique, K.H.M. 2017. ABA-mediated stomatal response in regulating water use during the development of terminal drought in wheat. Frontiers in Plant Science, 8(7), 1 – 14. DOI:10.3389/fpls.2017.01251.10.3389/fpls.2017.01251
- Savin, R., Stone, P.J., Nicolas, M.E. and Wardlaw, I.F. 1997. Grain growth and malting quality of barley. 1. Effects of heat stress and moderately high temperature. Australian Journal of Agricultural Research, 48(5), 615 – 624. DOI: 10.1071/A96064.10.1071/A96064
- Senapati, N., Stratonovitch, P., Paul, M.J., Semenov, M.A. 2018. Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. Journal of Experimental Botany, 69(13), 1 – 12. DOI:10.1093/jxb/ery226.10.1093/jxb/ery226
- Siddiqui, M.N., Mostofa, M.G., Akter, M.M., Srivastava, A.K., Sayed, M.A., Hasan, M.S. and Tran, L.S. 2017. Impact of salt-induced toxicity on growth and yield-potential of local wheat cultivars: oxidative stress and ion toxicity are among the major determinants of salt-tolerant capacity. Chemosphere, 187(1), 385 – 394. DOI:10.1016/j.chemo-sphere.2017.08.07.
- Singh, J. and Thakur, J.K. 2018. Photosynthesis and abiotic stress in plants. Biotic and Abiotic Stress Tolerance in Plants. Singapore: Springer, pp. 27 – 46. ISBN 978-981-10-9029-510.1007/978-981-10-9029-5_2
- ŠKODÁČEK, Z. and PRÁŠIL, I.T. 2011. New possibilities for research of barley (Hordeum vulgare L.) drought resistance. Úroda, 59(8), 24 – 29.
- Souza, R.P., Machado, E.C., Silva, J.A.B., Lagôaa, A.M.M.A. and Silveira, J.A.G. 2004. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environmental and Experimental Botany, 51(1), 45 – 56. DOI:10.1016/S0098-8472(03)00059-5.10.1016/S0098-8472(03)00059-5
- Swindell, W.R., Huebner, M., Weber, A.P. 2007. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics, 22, 8, 1 – 15. DOI:10.1186/1471-2164-8-125.10.1186/1471-2164-8-125188753817519032
- Tatar, O. and Gevrek, M.N. 2008. Influence of water stress on proline accumulation, lipid peroxidation and water content of wheat. Asian Journal of Plant Science, 7, 409 – 412. DOI: 10.3923/ajps.2008.409.41210.3923/ajps.2008.409.412
- Thomas, W.T.B. 2015. Drought-resistant cereals: impact on water sustainability and nutritional quality. Proceedings of the Nutrition Society, 74(3), 191 – 197. DOI:10.1017/S0029665115000026.10.1017/S002966511500002625702698
- Tuberosa, R. and Salvi, S. 2006. Genomics-based approaches to improve drought tolerance of crops. Trends in Plant Science, 11(8), 405 – 412. DOI:10.1016/j.tplants.2006.06.003.10.1016/j.tplants.2006.06.00316843036
- Vílchez, J.I., García-Fontana, C., Román-Naranjo, D., González-López, J. and Manzanera, M.O. 2016. Plant drought tolerance enhancement by trehalose production of desiccation-tolerant microorganisms. Frontiers in Microbiology, 7, 1577. DOI:10.3389/fmicb.2016.01577.10.3389/fmicb.2016.01577504313827746776
- Vítámvás, P., Kosová, K., Musilová, J., Holková, L., Mařik, P., Smutná, P., Klíma, M. and Prášil, I.T. 2019. Relationship between dehydrin accumulation and winter survival in winter wheat and barley grown in the field. Frontiers in Plant Science, 10(7), 1 – 11. DOI:10.3389/fpls.2019.00007.10.3389/fpls.2019.00007636185830761163
- Wahid, A., Perveen, M., Gelani, S. and Basra, S.M.A. 2007. Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. Journal of Plant Physiology, 164(3), 283 – 294. DOI:10.1016/j.jplph.2006.01.005.10.1016/j.jplph.2006.01.00516545492
- Wang, J., Vanga, S.K., Saxena, R., Orsat, V., RaghavaN, V. 2018. Effect of climate change on the yield of cereal crops: A review. Climate, 6(2), 1–19. DOI:10.3390/cli6020041.10.3390/cli6020041
- Wang, W., Vinocur, B. and Altman, A. 2003. Plant responses to drought, salinity, and extreme temperatures: towards genetic engineering for stress tolerance. International Journal of Plant Biology, 218(1), 1 – 14. DOI:10.1007/s00425-003-1105-5.10.1007/s00425-003-1105-514513379
- Ward, J.K., Tissue, D.T., Thomas, R.B., Strain, B.R. 1999. Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Global Change Biology, 5, 857 – 867. DOI:10.1046/j.1365-2486.1999.00270.x.10.1046/j.1365-2486.1999.00270.x
- Wardlaw, I.F. and Willenbrink, J. 2000. Mobilization of fructan reserves and changes in enzyme activities in wheat stems correlate with water stress during kernel filling. New Phytologist, 148(3), 413 – 422. DOI:10.1046/j.1469-8137.2000.00777.x.10.1046/j.1469-8137.2000.00777.x33863022
- Zenda, T., Liu, S. and Duan, H. 2020. Adapting cereal grain crops to drought stress: 2020 and Beyond [Online First], IntechOpen, DOI:10.5772/intechopen.93845. Available from: https://www.intechopen.com/online-first/adapting-cereal-grain-crops-to-drought-stress-2020-and-beyond10.5772/intechopen.93845
- Zhai, C.Z., Zhao, L., Yin, L.J., Chen, M., Wang, Q.Y., Li, L.Ch., Xu, Z.S. and MA, Y.Z. 2013. Two wheat glutathione peroxidase genes whose products are located in chloroplasts improve salt and H2O2 tolerances in Arabidopsis. PLOS ONE, 8(10), 1 – 13. DOI:10.1371/journal.pone.0073989.10.1371/journal.pone.0073989378878424098330
- Zhou, H., Hussain, S.S., Hackenberg, M., Bazanova, N., Eini, O., Li, J., Gustafson, P. and Shi, B. 2018. Identification and characterisation of a previously unknown drought tolerance-associated microRNA in barley. Plant Journal, 95, 138 – 149. DOI:10.1111/tpj.13938.10.1111/tpj.1393829681080
- Zhou, Y., Lam, H.M. and Zhang, J. 2007. Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. Journal of Experimental Botany, 58(5), 1207 – 1217. DOI:10.1093/jxb/erl291.10.1093/jxb/erl29117283375