Abid, M., Ali, S., Qi, L.K., Zahoor, R., Tian, Z., Jiang, D., Snider, J.L. and Dai, T. 2018. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports, 4615(8), 1 – 15. DOI:10.1038/s41598-018-21441-7.10.1038/s41598-018-21441-7585467029545536
Ahmed, R.F., Irfan, M., Shakir, H.A., Khan, M. and Chen, L. 2020. Engineering drought tolerance in plants by modification of transcription and signalling factors. Biotechnology & Biotechnological Equipment, 34, 781 – 789. DOI: 10.1080/13102818.2020.1805359.10.1080/13102818.2020.1805359
Alghabari, F. and Ihsan, M.Z. 2018. Effects of drought stress on growth, grain filling duration, yield and quality attributes of barley (Hordeum vulgare L.). Bangladesh Journal of Botany, 47(3), 421 – 428. DOI:10.3329/bjb.v47i3.38679.10.3329/bjb.v47i3.38679
Alghabari, F., Ihsan, M.Z., Hussain, S., Aishia, G., Daur, I. 2015. Effect of Rht alleles on wheat grain yield and quality under high temperature and drought stress during booting and anthesis. Environmental Science and Pollution Research, 22(1), 15506 – 15515. DOI:10.1007/s11356-015-4724-z.10.1007/s11356-015-4724-z26006072
Andersen, M.N., Asch, F., Wu, Y., Jensen, Ch.R., Næsted, H., Mogensen, V.O. and Koch, K.E. 2002. Soluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize. Plant Physiology, 130(2), 591 – 604. DOI:10.1104/pp.005637.10.1104/pp.00563716658912376627
Anjum, S.A., Xie, X., Wang, L., Saleem, M.F., Man, C. and Lei, W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026 – 2032. DOI:10.5897/AJAR10.027.
Araus, J.L., Slafer, G.A., Reynolds, M.P. and Royo, C. 2002. Plan breeding and drought in C3 cereals: What should we breed for? Annals of Botany, 89, 925 – 940. DOI:10.1093/aob/mcf049.10.1093/aob/mcf049423379912102518
Atkinson, N.J. and Urwin, P.E. 2012. The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 63(10), 3523 – 3543. DOI:10.1093/jxb/ers100.10.1093/jxb/ers10022467407
Anwar, A. and Kim, J.-K. 2020. Transgenic breeding approaches for improving abiotic stress tolerance: Recent progress and future perspectives. International Journal of Molecular Sciences, 21, 2695. DOI:10.3390/ijms21082695.10.3390/ijms21082695721624832295026
Bonifacio, A., Martins, M.O., Ribeiro, C.W., Fontenele, A.V., Carvalho, F.E.L., Margis-Pinheiro, M., Silveira, J.A.G. 2011. Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress. Plant, Cell & Environment, 34(10), 1705 – 1722. DOI:10.1111/j.1365-3040.2011.02366.x.10.1111/j.1365-3040.2011.02366.x21631533
Cheng, L., Wang, Y., He, Q., Li, H., Zhang, X. and Zhang, F. 2016. Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat Triticum aestivum L.) cultivars under dehydration and rehydration. BMC Plant Biology, 16(1), 1 – 23. DOI:10.1186/s12870-016-0871-8.10.1186/s12870-016-0871-8500638227576435
Davies, W.J., Kudoyarova, G. and Hartung, W. 2005. Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant´s response to drought. Journal of Plant Growth Regulation, 24, 285 – 295. DOI:10.1007/s00344-005-0103-1.10.1007/s00344-005-0103-1
Daszkowska-Golec, A. and Szarejko, I. 2013. Abiotic Stress - Plant responses and applications in agriculture: The molecular basis of ABA-mediated plant response to drought. Rijeka: InTech, 418 pp. ISBN 978-953-51-1024-8.
Dikilitas, M., Simsek, E. and Roychoudhury, A. 2020. Modulation of abiotic stress tolerance through hydrogen peroxide. Chapter 7. Protective Chemical Agents in the Amelioration of Plant Abiotic Stress, 147 – 173. USA: John Wiley & Sons, Ltd. DOI:10.1002/9781119552154.ch7.10.1002/9781119552154.ch7
Earl, H.J. and Davis, R.F. 2003. Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agronomy Journal, 95(3), 688 – 696. DOI:10.2134/agronj2003.0688.10.2134/agronj2003.6880
FAO. 2018. The impact of disasters and crises on agriculture and food security. Rome: Food and Agriculture Organization of the United Nations, 168 pp. ISBN: 978-92-5-130359-7
Farooq, M, Wahid, A., Kobayashi, N., Fujita, D. and Basra, S.M.A. 2009. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185 – 212. DOI:10.1051/agro:2008021.10.1051/agro:2008021
Gao, S., Xu, H., Cheng, X., Chen, M., Xu, Z., Li, L., Ye, X., Du, L., Hao, X. and Ma, Y. 2005. Improvement of wheat drought and salt tolerance by expression of a stress inducible transcription factor GmDREB of soybean (Glycine max). Chinese Science Bulletin, 50, 2714 – 2723. DOI: 10.1007/BF02899641.10.1007/BF02899641
Ghatak, A., Chaturvedi, P. and Weckwerth, W. 2017. Cereal crop proteomics: systemic analysis of crop drought stress responses towards marker-assisted selection breeding. Frontiers in Plant Science, 8(757), 1 – 25. DOI:10.3389/fpls.2017.00757.10.3389/fpls.2017.00757
Gregorová, Z., Kováčik, J., Klejdus, B., Maglovski, M., Kuna, R., Hauptvogel, P. and Matušíková, I. 2015. Drought – induced responses of physiology, metabolites, and PR proteins in Triticum aestivum. Journal of Agricultural and Food Chemistry, 63(37), 8125 – 8133. DOI:10.1021/acs. jafc.5b02951.
Guo, H., Zhang, H., Wang, G., Wang, Ch., Wang, Y., Liu, X. and Ji, W. 2021. Identification and expression analyses of heat-shock proteins in wheat infected with powdery mildew and stripe rust. The Plant Genome, e20092, 1 – 15. DOI:10.1002/tpg2.2009210.1002/tpg2.20092
Hamim, 2005. Photosynthesis of C3 and C4 species in response to increased CO2 concentration and drought stress. Hayati, 12(4), 131 – 138.10.1016/S1978-3019(16)30340-0
Han, H., Tian, Z., Fan, Y., Cui, Y., Cai, J., Jiang, D., Cao, W. and Dai, T. 2015. Water-deficit treatment followed by re-watering stimulates seminal root growth associated with hormone balance and photosynthesis in wheat (Triticum aestivum L.) seedlings. Plant Growth Regulation, 77(2), 201 – 210. DOI: 10.1007/s10725-015-0053-y.10.1007/s10725-015-0053-y
Houshmand, S., Arzani, A. and Mirmohammadi-Maibody, S.A.M. 2014. Effects of salinity and drought stress on grain quality of durum wheat. Communications in Soil Science and Plant Analysis, 45(3), 297 – 308. DOI: 10.1080/00103624.2013.861911.10.1080/00103624.2013.861911
Izanloo, A., Condon, A.G., Langridge, P., Tester, M. and Schnurbusch, T. 2008. Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. Journal of Experimental Botany, 59(12), 3327 – 3346. DOI:10.1093/jxb/ern199.10.1093/jxb/ern199252923218703496
Jacob, P., Hirt, H. and Bendahmane, A. 2017. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal, 15(4), 405 – 414. DOI: 10.1111/pbi.12659.10.1111/pbi.12659536268727860233
Jansen, G., Schliephake, E., Kopahnke, D. and Ordon, F. 2013. Effect of N-fertilization, fungicide treatment, seed density and abiotic stress factors on the total ß-glucan content of six-rowed winter barley (Hordeum vulgare L.). Journal of Applied Botany and Food Quality, 86(1), 180 – 184. DOI: 10.5073/JABFQ.2013.086.024.
Javed, T., Shabbir, R., Ali, A., Afzal, I., Zaheer, U. and Gao, S.-J. 2020. Transcription factors in plant stress responses: Challenges and potential for sugarcane improvement. Plants, 9, 491. DOI:10.3390/plants9040491.10.3390/plants9040491723803732290272
Jha, S. 2019. Transgenic approaches for enhancement of salinity stress tolerance in plants. In Singh, S.P., Upadhyay, S.K., Pandey, A., Kumar, S. (Eds.) Molecular Approaches in Plant Biology and Environmental Challenges, Energy, Environment, and Sustainability. Singapore: Springer Nature, 266 – 322. ISBN 978-981-15-0692-510.1007/978-981-15-0690-1_14
Jiang, W., Yang, L., Yiqin, H., Zhang, H., Li, W., Chen, H., Ma, D. and Yin, J. 2019. Genome-wide identification and transcriptional expression analysis of superoxide dismutase (SOD) family in wheat (Triticum aestivum). Peer J, 19(7), 1 – 26. DOI:10.7717/peerj.8062.10.7717/peerj.8062687388031763072
Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M. and Sharma, A. 2020. The Impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Applied Sciences, 10(16), 1 – 19. DOI:10.3390/app10165692.10.3390/app10165692
Khadka, K., Earl, H.J., Raizada, M.N. and Navabi, A. 2020. A physio-morphological trait-based approach for breeding drought tolerant wheat. Frontiers in Plant Science, 11, article: 715. DOI:10.3389/FPLS.2020.00715.10.3389/fpls.2020.00715728628632582249
Khan, N., Ali, S., Tariq, H., Latif, S., Yasmin, H., Mehmood, A. and Shahid, M.A. 2020. Water conservation and plant survival strategies of Rhizobacteria under drought stress. Agronomy, 10, 1683. DOI:10.3390/agronomy10111683.10.3390/agronomy10111683
Khan, S., Anwar, S., Yu, S., Sun, M., Yang, Z. and Gao, Z.-Q. 2019. Development of drought-tolerant transgenic wheat: Achievements and limitations. International Journal of Molecular Sciences, 20, 3350. DOI:10.3390/ijms20133350.10.3390/ijms20133350665153331288392
Klimešová, J., Holková, L. and Středa, T. 2017. The expression of dehydrin genes and the intensity of transpiration in drought-stressed maize plants. Cereal Research Communications, 45(3), 355 – 368. DOI:10.1556/0806.45.2017.017.10.1556/0806.45.2017.017
Kole, C., Muthamilarasan, M., Henry, R. et al. 2015. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Frontiers in Plant Science, 6, article: 563. DOI:10.3389/fpls.2015.00563.10.3389/fpls.2015.00563453142126322050
Kumar, A., Sharma, S., Chunduri, V. et al. Genome-wide identification and characterization of heat shock protein family reveals role in development and stress conditions in Triticum aestivum L. Scientific Reports, 10(7858). DOI:10.1038/s41598-020-64746-2.10.1038/s41598-020-64746-2721789632398647
Li, Y.F., Wu, Y., Hernandez-Espinosa, N. and Peña, R.J. 2013. Heat and drought stress on durum wheat: Responses of genotypes, yield and quality parameters. Journal of Cereal Science, 57(3), 398 – 404. DOI:10.1016/j.jcs.2013.01.005.10.1016/j.jcs.2013.01.005
Magallanes-López, A.M., Ammar, K., Morales-Dorantes, A., González-Santoyo, H., Crossa, C. and Guzmán, C. 2017. Grain quality traits of commercial durum wheat varieties and their relationships with drought stress and glutenins composition. Journal of Cereal Science, 75(1), 1 – 9. DOI: 10.1016/j.jcs.2017.03.005.10.1016/j.jcs.2017.03.005
Napolean, T., Kaul, J., Mukri, G. and Mittal, S. 2018. Genomics-enabled next-generation breeding approaches for developing system-specific drought tolerant hybrid in maize. In Luo, L., Mei, H., Tuberosa, R., Nguyen, H.T. and Lu, B. (Eds.) Crop Breeding for Drought Resistance. Lausanne: Frontiers Media, pp. 200 – 221. DOI:10.3389/fpls.2018.00361.10.3389/fpls.2018.00361590516929696027
Oladosu, Y., Rafii, M.Y., Samuel, C., Fatai, A., Magaji, U., Kareem, I., Kamarudin, Z.S., Muhammad, I. and Kolapo, K. 2019. Drought resistance in rice from conventional to molecular breeding: A review. International Journal of Molecular Sciences, 20, 3519. DOI:10.3390/ijms20143519.10.3390/ijms20143519667808131323764
Pang, Y., Liu, C., Wang, D. et al. 2020. High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat. Molecular Plant, 13(9), 1311 – 1327. DOI:10.1016/j. molp.2020.07.008.
Parkash, V. and Singh, S. 2020. A review on potential plant-based water stress indicators for vegetable crops. Sustainability, 12(10), 3945. DOI:10.3390/su12103945.10.3390/su12103945
Paul, S. and Roychoudhury, A. 2018. Transgenic plants for improved salinity and drought tolerance. In Gosal, S.S. and Wani, S.H. (Eds.) Biotechnologies of Crop Improvement, vol. 2. New York City: Springer International Publishing AG, pp. 141 – 181. ISBN 978-3-319-90649-2.
Prasad, P.V.V., Bheemanahalli, R. and Jagadish, S.V.K. 2017. Field crops and the fear of heat stress – Opportunities, challenges, and future directions. Field Crops Research, 200(1), 114 – 121. DOI:10.1016/j.fcr.2016.09.024.10.1016/j.fcr.2016.09.024
Reddy, A.R., Chaitanya, K.V. and Vivekanandan, M. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161(11), 1189 – 1202. DOI:10.1016/j.jplph.2004.01.013.10.1016/j.jplph.2004.01.01315602811
Samarah, N.H. 2005. Effects of drought stress on growth and yield of barley. Agronomy for Sustainable Development, 25, (1), 145 – 149. DOI:10.1051/agro:2004064.10.1051/agro:2004064
Saradadevi, R., Bramley, H., Palta, J.A., Edwards, E., Siddique, K.H.M. 2015. Root biomass in the upper layer of the soil profile is related to the stomatal response of wheat as the soil dries. Functional Plant Biology, 43(1), 62 – 74. DOI: 10.1071/FP15216.10.1071/FP1521632480442
Saradadevi, R., Palta, J.A. and Siddique, K.H.M. 2017. ABA-mediated stomatal response in regulating water use during the development of terminal drought in wheat. Frontiers in Plant Science, 8(7), 1 – 14. DOI:10.3389/fpls.2017.01251.10.3389/fpls.2017.01251
Savin, R., Stone, P.J., Nicolas, M.E. and Wardlaw, I.F. 1997. Grain growth and malting quality of barley. 1. Effects of heat stress and moderately high temperature. Australian Journal of Agricultural Research, 48(5), 615 – 624. DOI: 10.1071/A96064.10.1071/A96064
Senapati, N., Stratonovitch, P., Paul, M.J., Semenov, M.A. 2018. Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. Journal of Experimental Botany, 69(13), 1 – 12. DOI:10.1093/jxb/ery226.10.1093/jxb/ery226
Siddiqui, M.N., Mostofa, M.G., Akter, M.M., Srivastava, A.K., Sayed, M.A., Hasan, M.S. and Tran, L.S. 2017. Impact of salt-induced toxicity on growth and yield-potential of local wheat cultivars: oxidative stress and ion toxicity are among the major determinants of salt-tolerant capacity. Chemosphere, 187(1), 385 – 394. DOI:10.1016/j.chemo-sphere.2017.08.07.
Singh, J. and Thakur, J.K. 2018. Photosynthesis and abiotic stress in plants. Biotic and Abiotic Stress Tolerance in Plants. Singapore: Springer, pp. 27 – 46. ISBN 978-981-10-9029-510.1007/978-981-10-9029-5_2
Souza, R.P., Machado, E.C., Silva, J.A.B., Lagôaa, A.M.M.A. and Silveira, J.A.G. 2004. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environmental and Experimental Botany, 51(1), 45 – 56. DOI:10.1016/S0098-8472(03)00059-5.10.1016/S0098-8472(03)00059-5
Tatar, O. and Gevrek, M.N. 2008. Influence of water stress on proline accumulation, lipid peroxidation and water content of wheat. Asian Journal of Plant Science, 7, 409 – 412. DOI: 10.3923/ajps.2008.409.41210.3923/ajps.2008.409.412
Vílchez, J.I., García-Fontana, C., Román-Naranjo, D., González-López, J. and Manzanera, M.O. 2016. Plant drought tolerance enhancement by trehalose production of desiccation-tolerant microorganisms. Frontiers in Microbiology, 7, 1577. DOI:10.3389/fmicb.2016.01577.10.3389/fmicb.2016.01577504313827746776
Vítámvás, P., Kosová, K., Musilová, J., Holková, L., Mařik, P., Smutná, P., Klíma, M. and Prášil, I.T. 2019. Relationship between dehydrin accumulation and winter survival in winter wheat and barley grown in the field. Frontiers in Plant Science, 10(7), 1 – 11. DOI:10.3389/fpls.2019.00007.10.3389/fpls.2019.00007636185830761163
Wahid, A., Perveen, M., Gelani, S. and Basra, S.M.A. 2007. Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. Journal of Plant Physiology, 164(3), 283 – 294. DOI:10.1016/j.jplph.2006.01.005.10.1016/j.jplph.2006.01.00516545492
Wang, J., Vanga, S.K., Saxena, R., Orsat, V., RaghavaN, V. 2018. Effect of climate change on the yield of cereal crops: A review. Climate, 6(2), 1–19. DOI:10.3390/cli6020041.10.3390/cli6020041
Wang, W., Vinocur, B. and Altman, A. 2003. Plant responses to drought, salinity, and extreme temperatures: towards genetic engineering for stress tolerance. International Journal of Plant Biology, 218(1), 1 – 14. DOI:10.1007/s00425-003-1105-5.10.1007/s00425-003-1105-514513379
Zenda, T., Liu, S. and Duan, H. 2020. Adapting cereal grain crops to drought stress: 2020 and Beyond [Online First], IntechOpen, DOI:10.5772/intechopen.93845. Available from: https://www.intechopen.com/online-first/adapting-cereal-grain-crops-to-drought-stress-2020-and-beyond10.5772/intechopen.93845
Zhai, C.Z., Zhao, L., Yin, L.J., Chen, M., Wang, Q.Y., Li, L.Ch., Xu, Z.S. and MA, Y.Z. 2013. Two wheat glutathione peroxidase genes whose products are located in chloroplasts improve salt and H2O2 tolerances in Arabidopsis. PLOS ONE, 8(10), 1 – 13. DOI:10.1371/journal.pone.0073989.10.1371/journal.pone.0073989378878424098330
Zhou, H., Hussain, S.S., Hackenberg, M., Bazanova, N., Eini, O., Li, J., Gustafson, P. and Shi, B. 2018. Identification and characterisation of a previously unknown drought tolerance-associated microRNA in barley. Plant Journal, 95, 138 – 149. DOI:10.1111/tpj.13938.10.1111/tpj.1393829681080
Zhou, Y., Lam, H.M. and Zhang, J. 2007. Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. Journal of Experimental Botany, 58(5), 1207 – 1217. DOI:10.1093/jxb/erl291.10.1093/jxb/erl29117283375