Have a personal or library account? Click to login
Rhizosphere Bacteriobiome of the Husk Tomato Grown in the Open Field in West Siberia Cover

Rhizosphere Bacteriobiome of the Husk Tomato Grown in the Open Field in West Siberia

Open Access
|Dec 2019

References

  1. AHKAMI, A.H. – WHITE, R.A. – HANDAKUMBURA, P.P. – JANSSON, C. 2017. Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity. In Rhizosphere, vol. 3, no. 2, pp. 233 – 243. DOI: 10.1016/j.rhi-sph.2017.04.01210.1016/j.rhi-sph.2017.04.012
  2. ALLARD, S.M. – WALSH, C.S. – WALLIS, A.E. – OT-TESEN, A.R. – BROWN, E.W. – MICALLEF, S.A. 2016. Solanum lycopersicum (tomato) hosts robust phyllosphere and rhizosphere bacterial communities when grown in soil amended with various organic and synthetic fertilizers. In Science of the Total Environment, vol. 573, pp. 555 – 563. DOI: 10.1016/j.scitotenv.2016.08.15710.1016/j.scitotenv.2016.08.157
  3. BERENDSEN, R.L. – PIETERSE, C.M.J. – BAKKER, P.A.H.M. 2012. The rhizosphere microbiome and plant health. In Trends in Plant Science, vol. 17, no. 8, pp. 478 – 486. DOI: 10.1016/j.tplants.2012.04.00110.1016/j.tplants.2012.04.001
  4. CAI, F. – PANG, G. – MIAO, Y. – LI, R. – LI, R. – SHEN, Q. – CHEN, W. 2017. The nutrient preference of plants influences their rhizosphere microbiome. In Applied Soil Ecology, vol. 110, pp. 146 – 150. DOI: 10.1016/j.apsoil.2016.11.00610.1016/j.apsoil.2016.11.006
  5. CORDERO-RAMÍREZ, J.D. – LÓPEZ-RIVERA, R. – CALDERÓN-VÁZQUEZ, C.L. – FIGUEROA-LÓPEZ, A.MI. – MARTÍNEZ-ÁLVAREZ, J.C. – LEYVA-MADRIGAL, K.Y. – CERVANTES-GÁMEZ, R.G. – MALDONA-DO-MENDOZA, I.E. 2012. Microorganismos asociados a la rizosfera de jitomate en un agroecosistema del valle de Guasave, Sinaloa, México. In Revista Mexicana de Biodiversidad, vol. 83, no. 3, pp. 712 – 730. DOI: 10.7550/rmb.1789710.7550/rmb.17897
  6. EDGAR, R.C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. In Nature Methods, vol. 10, pp. 996 – 998. DOI: 10.1038/nmeth.260410.1038/nmeth.2604
  7. EDGAR, R.C. 2016. SINTAX, a Simple Non-Bayesian Taxonomy Classifier for 16S and ITS Sequences. bioRxiv., DOI: 10.1101/07416110.1101/074161
  8. FADROSH, D.W. – MA, B. – GAJER, P. – GAJER, P. – SENGAMALAY, N. – OTT, S. – BROTMAN, R.M. – RAVEL, J. 2014. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. In Microbiome, vol. 2, no. 1, pp. 6. DOI: 10.1186/2049-2618-2-610.1186/2049-2618-2-6
  9. FAUTH, E. – BERNARDO, J. – CAMARA, M. – RESETARITS, W.J. – VAN BUSKIRK, J. – MCCOLLUM, S.A. 1996. Simplifying the Jargon of community ecology: A conceptual approach. In The American Naturalist, vol. 147, pp. 282 – 286.10.1086/285850
  10. HAMMER, Ø. – HARPER, D.A.T. – RYAN, P.D. 2001. PAST: Paleontological statistics software package for education and data analysis. In Palaeontologia Electronica, vol. 4, pp. 1 – 9.
  11. HUGHES, J.B. – HELLMANN, J.J. 2005. The application of rarefaction techniques to molecular inventories of microbial diversity. In Methods in Enzymology, vol. 397, pp. 292 – 308. https://doi.org/10.1016/S0076-6879(05)97017-110.1016/S0076-6879(05)97017-1
  12. IGOLKINA, А.А. – GREKHOV, G.A. – PERSHINA, E.V. – SAMOSOROVA, G.G. – LEUNOVA, V.M. – SEMENOVA, A.N. – BATURINA, O.A. – KABILOV, M.R. – ANDRONOV, E.E. 2018. Identifying components of mixed and contaminated soil samples by detecting specific signatures of control 16S rRNA libraries. In Ecoogical Indicators, vol. 94, no.1, pp. 446 – 453. DOI: 10.1016/j.ecolind.2018.06.06010.1016/j.ecolind.2018.06.060
  13. IUSS WORKING GROUP. 2014. WRB, World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. Rome: FAO.
  14. KHAN, W. – BAKHT, J. – NAIR, M.G. – UDDIN, M.N. – SHAFI, M. 2018. Extraction and isolation of important bioactive compounds from the fruit of Physalis ixocarpa. In Pakistan Journal of Pharmaceutical Sciences, vol. 31, no. 6, pp. 2463 – 2469.
  15. KHAN, W. – BAKHT, J. – SHAFI, M. 2016. Antimicrobial potentials of different solvent extracted samples from Physalis ixocarpa. In Pakistan Journal of Pharmaceutical Sciences, vol. 29, no. 2, pp. 467 – 475.
  16. LEE, S.A. – PARK, J. – CHU, B. – KIM, J.M. – JOA, J.H. – SANG, M.K. – SONG, J. – WEON, H.Y. 2016. Comparative analysis of bacterial diversity in the rhizosphere of tomato by culture-dependent and -independent approaches. In Journal of Microbioogy, vol. 54, no. 12, pp. 823 – 831. DOI: 10.1007/s12275-016-6410-310.1007/s12275-016-6410-327888459
  17. LI, B. – CAO, Y. – GUAN, X. – LI, Y. – HAO, ZH. – HU, W. – CHEN, L. 2019. Microbial assessments of soil with a 40-year history of reclaimed wastewater irrigation. In Science of the Total Environment, vol. 651, no. 1, pp. 696 – 705. DOI: 10.1016/j.scitotenv.2018.09.19310.1016/j.scitotenv.2018.09.19330245425
  18. MARQUEZ-SANTACRUZ, H.A. – HERNANDEZ-LEON, R. – OROZCO-MOSQUEDA, M.C. – VELAZQUEZ-SEPULVEDA, I. – SANTOYO, G. 2010. Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. In Genetic and Molecular Research, vol. 9, no. 4, pp. 2372 – 2380. DOI: 10.4238/vol9-4gmr92110.4238/vol9-4gmr92121157706
  19. MARTINES, M. – VARGAS-PONCE, O. – RODRIGUEZ, A. – CHIANG, F. – OCEGUEDA, S. 2017. Solanaceae family in Mexico. In Botanical Sciences, vol. 95, no. 1, pp. 1–15. DOI: 10.17129/botsci.65810.17129/botsci.658
  20. MORALES-CONTRERAS, B.E. – CONTRERAS-ESQUIVEL, J.C. – WICKER, L. – OCHOA-MARTÍNEZ, L.A. – MORALES-CASTRO, J. 2017. Husk Tomato (Physalis ixocarpa Brot.) Waste as a Promising Source of Pectin: Extraction and Physicochemical Characterization. In Journal of Food Science, vol. 82, no. 7, pp. 1594 – 1601. DOI: 10.1111/1750-3841.1376810.1111/1750-3841.1376828585703
  21. NAUMOVA, N.B. – SAVENKOV, O.A. – NECHAEVA, T.V. – FOTEV, Y.V. 2019. Yield and fruit properties of husk tomato (Physalis phyladelphica) cultivars grown in the open field in the South of West Siberia. In Horticulturae, vol. 5, no. 1, pp. 19. DOI: 10.3390/horticulturae501001910.3390/horticulturae5010019
  22. RAMÍREZ-GODINA, F. – ROBLEDO-TORRES, V. – FOROUGHBAKHCH-POURNABAV, R. – BENAVIDES-MENDOZA, A. – HERNÁNDEZ-PIÑERO, J.L. – REYES-VALDES, M.H. – ALVARADO-VÁZQUEZ, M.A. 2013. Yield and fruit quality evaluation in husk tomato autotetraploids (Physalis ixocarpa) and diploids. In Australian Journal of Crop Science, vol. 933, pp. 933 – 940.
  23. SALEEM, M. – LAW, A.D. – SAHIB, M.R. – PERVAIZ, Z.H. – ZHANG, Q. 2018. Impact of root system architecture on rhizosphere and root microbiome. In Rhizosphere, vol. 6, no. 1, pp. 47 – 51. DOI: 10.1016/j.rhisph.2018.02.00310.1016/j.rhisph.2018.02.003
  24. SMITH, R. – JIMENEZ, M.– CANTWELL, M. 1999. Tomatillo production in California. Available at http://anrcatalog.ucanr.edu/pdf/7246.pdf (accessed July 23, 2019)10.3733/ucanr.7246
  25. VALDIVIA-MARES, L.E. – RODRÍGUEZ ZARAGOZA, F.A. – SÁNCHEZ GONZÁLEZ, J.J. – VARGAS-PONCE, O. 2016. Phenology, agronomic and nutritional potential of three wild husk tomato species (Physalis, Solanaceae) from Mexico. In Scientia Horticulturae, vol. 200, pp. 83 – 94. DOI: 10.1016/j.scienta.2016.01.00510.1016/j.scienta.2016.01.005
  26. WALLENSTEIN, M.D. 2017. Managing and manipulating the rhizosphere microbiome for plant health: A systems approach. In Rhizosphere, vol. 3, no. 2, pp. 230 – 232. DOI: 10.1016/j.rhisph.2017.04.00410.1016/j.rhisph.2017.04.004
  27. WANG, Q. – GARRITY, G.M. – TIEDJE, J.M. – COLE, J.R. 2007. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. In Applied and Environmental Microbiology, vol. 73, pp. 5261 – 5267. DOI: 10.1128/AEM.00062-0710.1128/AEM.00062-07195098217586664
  28. WANG, M. – CHEN, L. – LI, Y. – CHEN, L. – LIU, ZH. – WANG, X. – YAN, P. – QIN, S. 2018. Responses of soil microbial communities to a short-term application of seaweed fertilizer revealed by deep amplicon sequencing. In Applied Soil Ecology, vol. 125, pp. 288 – 296. DOI: 10.1016/j.ap-soil.2018.02.01310.1016/j.ap-soil.2018.02.013
  29. XUE, D. – CHRISTENSON, R. – GENGER, R. – GEVENS, A. – LANKAU, R.A. 2018. Soil microbial communities reflect both inherent soil properties and management practices in Wisconsin potato fields. In American Journal of Potato Research, vol. 95, pp. 696. DOI: 10.1007/s12230-018-9677-610.1007/s12230-018-9677-6
  30. ZAMORA-TAVARES, P. – VARGAS-PONCE, O. – SANCHEZ-MARTINEZ, J. – CABRERA-TOLEDO, D. 2015. Diversity and genetic structure of the husk tomato (Physalis philadelphica Lam.) in Western Mexico. In Genetic Resources and Crop Evolution, vol. 62, pp. 141 – 153. DOI: 10.1007/s10722-014-0163-910.1007/s10722-014-0163-9
  31. ZHAO, Q. – ZENG, D.H. – FAN, Z.-P. 2010. Nitrogen and phosphorus transformations in the rhizospheres of three tree species in a nutrient-poor sandy soil. In Applied Soil Ecology, vol. 46, pp. 341 – 346. DOI: 10.1016/j.apsoil.2010.10.00710.1016/j.apsoil.2010.10.007
  32. ZHENG, M. – GUO, J. – XU, J. – YANG, K. – TANG, R. – GU, X. – LI, H. – CHEN, L. 2019. Ixocarpalactone A from dietary tomatillo inhibits pancreatic cancer growth by targeting PHGDH. In Food & Function, vol. 10, no. 6, pp. 3386 – 3395. DOI: 10.1039/c9fo00394k10.1039/C9FO00394K
DOI: https://doi.org/10.2478/agri-2019-0015 | Journal eISSN: 1338-4376 | Journal ISSN: 0551-3677
Language: English
Page range: 147 - 154
Submitted on: Aug 8, 2019
Accepted on: Nov 11, 2019
Published on: Dec 16, 2019
Published by: National Agricultural and Food Centre
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Natalia B. Naumova, Oleg A. Savenkov, Tatiana Y. Alikina, Marsel R. Kabilov, published by National Agricultural and Food Centre
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.