Have a personal or library account? Click to login
A comprehensive study of ground-roasted coffee beans from Coffea liberica as dipeptidyl peptidase IV inhibitors Cover

References

  1. Abdullah AHD, Chalimah S, Primadona I, Hanantyo MHG. Physical and chemical properties of corn, cassava, and potato starchs. IOP Conference Series: Earth and Environmental Science. 2018;160(1):012003. doi:10.1088/1755-1315/160/1/012003
  2. Abreu MB, Marcheafave GG, Bruns RE, Scarminio IS, Zeraik ML. Spectroscopic and Chromatographic Fingerprints for Discrimination of Specialty and Traditional Coffees by Integrated Chemometric Methods. Food Analytical Methods. 2020;13(12):2204–2212. doi:10.1007/S12161-020-01832-1/METRICS
  3. Al-Sulaiti H, Almaliti J, Naman CB, Al Thani AA, Yassine HM. Metabolomics Approaches for the Diagnosis, Treatment, and Better Disease Management of Viral Infections. Metabolites. 2023;13(8). doi:10.3390/metabo13080948
  4. Al-Sulaiti H, Anwardeen N, Bashraheel SS, Naja K, Elrayess MA. Alterations in Choline Metabolism in Non-Obese Individuals with Insulin Resistance and Type 2 Diabetes Mellitus. Metabolites. 2024;14(8):457. doi:10.3390/metabo14080457
  5. Ansari P, Hannon-Fletcher MP, Flatt PR, Abdel-Wahab YHA. Effects of 22 traditional anti-diabetic medicinal plants on DPP-IV enzyme activity and glucose homeostasis in high-fat fed obese diabetic rats. Bioscience Reports. 2021;41(1):1–15. doi:10.1042/BSR20203824
  6. Aprilia SA, Wonorahardjo S, Utomo Y. Analysis of nicotinic acid in coffee using the temperature programmable injection method in gas chromatography-mass spectrometry. Food Research. 2025;9(1):40–45.
  7. Aurum FS, Zaman MZ, Purwanto E, Praseptiangga D, Nakano K. Coffee authentication via targeted metabolomics and machine learning: Unveiling origins and their discriminating biochemicals. Food Bioscience. 2023;56(September):103122. doi:10.1016/j.fbio.2023.103122
  8. Baraldi IJ, Giordano RLC, Zangirolami TC. Enzymatic hydrolysis as an environmentally friendly process compared to thermal hydrolysis for instant coffee production. Brazilian Journal of Chemical Engineering. 2016;33(4):763–771. doi:10.1590/0104-6632.20160334s20140028
  9. Barrios-Rodriguez YF, Devia-Rodriguez Y, Gutierrez-Guzmán N. Detection of adulterated coffee by fourier-transform infrared (FTIRspectroscopy associated with sensory analysis. Coffee Science. 2022;17:1–12. doi:10.25186/.v17i.1970
  10. Buyong NL, Nillian E. Physiochemical properties of Sarawak’s adapted Liberica coffee silverskin utilizing varying solvents. Food Science and Nutrition. 2023;11(10):6052–6059. doi:10.1002/fsn3.3541
  11. Carlström M, Larsson SC. Coffee consumption and reduced risk of developing type 2 diabetes: A systematic review with meta-analysis. Nutrition Reviews. 2018;76(6):395–417. doi:10.1093/nutrit/nuy014
  12. Chang Y, Huang K, Yang F, et al. Metabolites of chlorogenic acid and its isomers: Metabolic pathways and activities for ameliorating myocardial hypertrophy. Journal of Functional Foods. 2022;96(August):105216. doi:10.1016/j.jff.2022.105216
  13. Chaowuttikul C, Palanuvej C, Ruangrungsi N. Quantification of chlorogenic acid, rosmarinic acid, and caffeic acid contents in selected Thai medicinal plants using RP-HPLC-DAD. Brazilian Journal of Pharmaceutical Sciences. 2020;56:e17547. doi:10.1590/S2175-97902019000317547
  14. Dilworth L, Facey A, Omoruyi F. Diabetes Mellitus and Its Metabolic Complications: The Role of Adipose Tissues. International Journal of Molecular Sciences 2021, Vol 22, Page 7644. 2021;22(14):7644. doi:10.3390/IJMS22147644
  15. Domingues DS, Pauli ED, De Abreu JEM, et al. Detection of roasted and ground coffee adulteration by HPLC by amperometric and by post-column derivatization UV–Vis detection. Food Chemistry. 2014;146:353–362. doi:10.1016/J.FOODCHEM.2013.09.066
  16. Du TL, Van Der Westhuizen FH, Botes L. Aloe ferox Leaf Gel Phytochemical Content, Antioxidant Capacity, and Possible Health Benefits. Journal of Agricultural and Food Chemistry. 2007;55(17):6891–6896. doi:10.1021/JF071110T
  17. Durgapal SD, Soman SS. Evaluation of novel coumarin-proline sulfonamide hybrids as anticancer and antidiabetic agents. Synthetic Communications. 2019;49(21):2869–2883. doi:10.1080/00397911.2019.1647439
  18. Ekpendu TOE, Adesomoju AA, Ekundayo O, Okogun JI, Laakso I. Constituents of the volatile oil of Mitracarpus scaber Zucc. Flavour and Fragrance Journal. 1993;8(5):269–271. doi:10.1002/FFJ.2730080506
  19. Ely SF. Sudden Death Related to Diabetes Mellitus: Current and Emerging Relevance to the Forensic Pathologist. https://doi.org/1023907/2016017. 2016;6(2):154–163. doi:10.23907/2016.017
  20. Fan J, Johnson MH, Lila MA, Yousef G, De Mejia EG. Berry and citrus phenolic compounds inhibit dipeptidyl peptidase IV: Implications in diabetes management. Evidence-based Complementary and Alternative Medicine. 2013;2013(479505). doi:10.1155/2013/479505
  21. Farag MA, Zayed A, Sallam IE, Abdelwareth A, Wessjohann LA. Metabolomics-Based Approach for Coffee Beverage Improvement in the Context of Processing, Brewing Methods, and Quality Attributes. Foods. 2022;11(6). doi:10.3390/foods11060864
  22. Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. International Journal of Molecular Sciences. 2020;21(17):1–34. doi:10.3390/ijms21176275
  23. Gleye C, Raynaud S, Fourneau C, et al. Cohibins C and D, Two Important Metabolites in the Biogenesis of Acetogenins from Annona muricata and Annona nutans1. Journal of Natural Products. 2000;63(9):1192–1196. doi:10.1021/NP000061A
  24. Guo N, Li C, Liu Q, et al. Maltol, a food flavor enhancer, attenuates diabetic peripheral neuropathy in streptozotocin-induced diabetic rats. Food and Function. 2018;9(12):6287–6297. doi:10.1039/c8fo01964a
  25. Herawati D, Loisanjaya MO, Kamal RH, Adawiyah DR, Andarwulan N. Profile of Bioactive Compounds, Aromas, and Cup Quality of Excelsa Coffee (Coffea liberica var. dewevrei) Prepared from Diverse Postharvest Processes. International Journal of Food Science. 2022;2022. doi:10.1155/2022/2365603
  26. Holdsworth DK, Jones RA, Self R. Volatile alkaloids from Areca catechu. Phytochemistry. 1998;48(3):581–582. doi:10.1016/S0031-9422(98)00016-8
  27. Insanu M, Fidrianny I, Imtinan NHH, Kusmardiyani S. Liberica coffee (Coffea liberica L.) from three different regions: In vitro antioxidant activities. Biointerface Research in Applied Chemistry. 2021;11(5):13031–13041. doi:10.33263/BRIAC115.1303113041
  28. Irnawati, Riswanto FDO, Riyanto S, Martono S, Rohman A. The use of software packages of R factoextra and FactoMineR and their application in principal component analysis for authentication of oils. Indonesian Journal of Chemometrics and Pharmaceutical Analysis. 2021;1(1):1–10.
  29. Istyastono EP, Yuniarti N, Prasasty VD, et al. Caffeic Acid in Spent Coffee Grounds as a Dual Inhibitor for MMP-9 and DPP-4 Enzymes. Molecules. 2023;28:7182. doi:10.3390/molecules28207182
  30. Jiménez-Carvelo AM, Martín-Torres S, Ortega-Gavilán F, Camacho J. PLS-DA vs sparse PLS-DA in food traceability. A case study: Authentication of avocado samples. Talanta. 2021;224(121904):1–10. doi:10.1016/j.talanta.2020.121904
  31. Kang SM, Park JH. Pleiotropic Benefits of DPP-4 Inhibitors Beyond Glycemic Control. Clinical Medicine Insights: Endocrinology and Diabetes. 2021;14(Cd). doi:10.1177/11795514211051698
  32. Komissarenko SN, Kovalev VN. Coumarins of Althaea officinalis and A. armenica. Chemistry of Natural Compounds. 1992;28(2):243–244. doi:10.1007/BF00630189/METRICS
  33. Konieczka PP, Aliaño-González MJ, Ferreiro-González M, Barbero GF, Palma M. Characterization of Arabica and Robusta coffees by ion mobility sum spectrum. Sensors (Switzerland). 2020;20(11). doi:10.3390/s20113123
  34. Kumar KJS, Lin C, Tseng YH, Wang SY. Fruits of Rosa laevigata and its bio-active principal sitostenone facilitate glucose uptake and insulin sensitivity in hepatic cells via AMPK/PPAR-γ activation. Phytomedicine Plus. 2021;1(4):100109. doi:10.1016/j.phyplu.2021.100109
  35. Lebeau-Roche E, Daniele G, Fildier A, et al. An optimized LC-HRMS untargeted metabolomics workflow for multi-matrices investigations in the three-spined stickleback. PLoS ONE. 2021;16(11 November):1–22. doi:10.1371/journal.pone.0260354
  36. Li S, Wang J, Zhang B, Li X, Liu Y. Diabetes Mellitus and Cause-Specific Mortality: A Population-Based Study. Diabetes & Metabolism Journal. 2019;43(3):319–341. doi:10.4093/DMJ.2018.0060
  37. Lin SR, Chang CH, Tsai MJ, et al. The perceptions of natural compounds against dipeptidyl peptidase 4 in diabetes: from in silico to in vivo. Therapeutic Advances in Chronic Disease. 2019;10:1–16. doi:10.1177/https
  38. Liu Y, Dao Z, Yang C, Liu Y, Long C. Medicinal plants used by Tibetans in Shangri-la, Yunnan, China. Journal of Ethnobiology and Ethnomedicine. 2009;5(1):1–10. doi:10.1186/1746-4269-5-15/TABLES/4
  39. Ma CY, Liu WK, Che CT. Lignanamides and Nonalkaloidal Components of Hyoscyamus niger Seeds. Journal of Natural Products. 2002;65(2):206–209. doi:10.1021/NP010073B
  40. Makiso MU, Tola YB, Ogah O, Endale FL. Bioactive compounds in coffee and their role in lowering the risk of major public health consequences: A review. Food Science and Nutrition. 2024;12(2):734–764. doi:10.1002/fsn3.3848
  41. Martín-Gómez A, Rodríguez-Hernández P, Cardador MJ, Vega-Márquez B, Rodríguez-Estévez V, Arce L. Guidelines to build PLS-DA chemometric classification models using a GC-IMS method: Dry-cured ham as a case of study. Talanta Open. 2023;7(October 2022):100175. doi:10.1016/j.talo.2022.100175
  42. Martins VDC, Godoy RLDO, Gouveâ ACMS, et al. Fraud investigation in commercial coffee by chromatography. Food Quality and Safety. 2018;2(3):121–133. doi:10.1093/FQSAFE/FYY017
  43. Mazzafera P, Crozier A, Sandberg G. Studies on the Metabolic Control of Caffeine Turnover in Developing Endosperms and Leaves of Coffea arabica and Coffea dewevrei. Journal of Agricultural and Food Chemistry. 1994;42(7):1423–1427. doi:10.1021/JF00043A007/ASSET/JF00043A007.FP.PNG_V03
  44. Miyazawa M, Maruyama H, Kameoka H. Essential Oil Constituents of “MOUTAN RADIOS CORTEX” Paeonia moutan Sims. (= P. suffruticosa Andrews). Agricultural and Biological Chemistry. 1983;47(12):2925–2927. doi:10.1080/00021369.1983.10866058
  45. Moreira DP, Monteiro MC, Ribeiro-Alves M, Donangelo CM, Trugo LC. Contribution of Chlorogenic Acids to the Iron-Reducing Activity of Coffee Beverages. Journal of Agricultural and Food Chemistry. 2005;53(5):1399–1402. doi:10.1021/JF0485436
  46. Musdja MY, Nurdin A, Musir A. Antidiabetic effect and glucose tolerance of areca nut (Areca catechu) seed ethanol extract on alloxan-induced diabetic male rats. IOP Conference Series: Earth and Environmental Science. 2020;462(1):012036. doi:10.1088/1755-1315/462/1/012036
  47. Narkhede S. Understanding AUC - ROC Curve. Towards Data Science.
  48. Nishimura R, LaPorte RE, Dorman JS, Tajima N, Becker D, Orchard TJ. Mortality Trends in Type 2 Diabetes. Diabetes Care. 2018;24(5):823–827. doi:10.2337/diacare.24.5.823
  49. Núñez N, Collado X, Martínez C, Saurina J, Núñez O. Authentication of the origin, variety and roasting degree of coffee samples by non-targeted HPLC-UV fingerprinting and chemometrics. Application to the detection and quantitation of adulterated coffee samples. Foods. 2020;9(3):1–14. doi:10.3390/foods9030378
  50. Núñez N, Martínez C, Saurina J, Núñez O. High-Performance Liquid Chromatography with Fluorescence Detection (HPLC-FLD) Fingerprints as Chemical Descriptors to Authenticate the Origin, Variety and Roasting Degree of Coffee by Multivariate Chemometric Methods. Journal of the Science of Food and Agriculture. 2021;101(1):65–73. doi:10.1002/jsfa.10615
  51. Okuyama E, Hasegawa T, Matsushita T, Fujimoto H, Ishibashi M, Yamazaki M. Analgesic Components of Saposhnikovia Root (Saposhnikovia divaricata). Chemical and Pharmaceutical Bulletin. 2001;49(2):154–160. doi:10.1248/CPB.49.154
  52. Osborne R, Grove A, Oh P, Mabry TJ, Ng JC, Seawright AA. The magical and medicinal usage of Stangeria eriopus in South Africa. Journal of Ethnopharmacology. 1994;43(2):67–72. doi:10.1016/0378-8741(94)90005-1
  53. Pozo C, Rodríguez-Llamazares S, Bouza R, et al. Study of the structural order of native starch granules using combined FTIR and XRD analysis. Journal of Polymer Research. 2018;25(12). doi:10.1007/s10965-018-1651-y
  54. Prayoga A, Windarsih A, Apriyana W, Riswanto FDO, Istyastono EP. Authentication of Grape Seed Face Oil Using FTIR Spectroscopy Combined with Chemometrics Techniques. International Journal of Applied Pharmaceutics. 2024;16(5):220–224.
  55. Qiu S, Cai Y, Yao H, et al. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduction and Targeted Therapy. 2023;8(1):1–37. doi:10.1038/s41392-023-01399-3
  56. Rohart F, Gautier B, Singh A, Lê Cao KA. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Computational Biology. 2017;13(11):1–19. doi:10.1371/journal.pcbi.1005752
  57. Röhrborn D, Wronkowitz N, Eckel J. DPP4 in diabetes. Frontiers in Immunology. 2015;6(JUL):1–20. doi:10.3389/fimmu.2015.00386
  58. Sahachairungrueng W, Meechan C, Veerachat N, Thompson AK, Teerachaichayut S. Assessing the Levels of Robusta and Arabica in Roasted Ground Coffee Using NIR Hyperspectral Imaging and FTIR Spectroscopy. Foods 2022, Vol 11, Page 3122. 2022;11(19):3122. doi:10.3390/FOODS11193122
  59. Shirley AM, Chapple C. Biochemical characterization of sinapoylglucose:choline sinapoyltransferase, a serine carboxypeptidase-like protein that functions as an acyltransferase in plant secondary metabolism. Journal of Biological Chemistry. 2003;278(22):19870–19877. doi:10.1074/JBC.M302362200/ASSET/2E062BD9-0205-43C4-8C52-8F37C261857C/MAIN.ASSETS/GR8.JPG
  60. Silva JP, Mendez GL, Lombana J, Marrugo DG, Correa-Turizo R. Physicochemical Characterization of Spent Coffee Ground (Coffea Arabica L) and its Antioxidant Evaluation. Advance Journal of Food Science and Technology. 2018;16(SPL):220–225. doi:10.19026/ajfst.16.5958
  61. Singh AK, Patel PK, Choudhary K, Joshi J, Yadav D, Jin JO. Quercetin and coumarin inhibit dipeptidyl peptidase-IV and exhibits antioxidant properties: In silico, in vitro, ex vivo. Biomolecules. 2020;10(2):1–14. doi:10.3390/biom10020207
  62. Soni R, Durgapal SD, Soman SS, Georrge JJ. Design, synthesis and anti-diabetic activity of chromen-2-one derivatives. Arabian Journal of Chemistry. 2019;12(5):701–708. doi:10.1016/j.arabjc.2016.11.011
  63. Stoffelsma J, Sipma G, Kettenes DK, Pypker J. New Volatile Components of Roasted Coffee. Journal of Agricultural and Food Chemistry. 1968;16(6):1000–1004. doi:10.1021/JF60160A010/ASSET/JF60160A010.FP.PNG_V03
  64. Subarnas A, Oshima Y, Hikino H. New constituents of Astragalus mongholicus. Planta Medica. 1991;57(6):590. doi:10.1055/S-2006-960221/BIB
  65. Tandi J, Marsella M, Suarsana IMA, et al. The Effectiveness of Ethanol Extract of Robusta Coffee Seeds on Blood Glucose, Urea, and Creatinine Levels of Male White Rats Induced by Streptozotocin. Jurnal Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal). 2023;9(2):284–293. doi:10.22487/j24428744.2023.v9.i2.16352
  66. Tantapakul C, Krobthong S, Jakkaew P, Sittisaree W, Aonbangkhen C, Yingchutrakul Y. Potential of Arabica Coffee Beans from Northern Thailand: Exploring Antidiabetic Metabolites through Liquid Chromatography with Tandem Mass Spectrometry (LC-MS/MS) Metabolomic Profiling across Diverse Postharvest Processing Techniques. Foods. 2023;12(21). doi:10.3390/foods12213893
  67. Thao BTP, Lieu TTB, Tuan DQ. Detection and quantification of adulterated corn and soybean in ground coffee. Asia Pacific Journal of Sustainable Agriculture Food and Energy. 2014;2(3):17–21.
  68. Thomas AF, Bassols F. Occurrence of Pyridines and Other Bases in Orange Oil. Journal of Agricultural and Food Chemistry. 1992;40(11):2236–2243. doi:10.1021/JF00023A037/ASSET/JF00023A037.FP.PNG_V03
  69. Tran TLC, Callahan DL, Islam MT, Wang Y, Arioli T, Cahill D. Comparative metabolomic profiling of Arabidopsis thaliana roots and leaves reveals complex response mechanisms induced by a seaweed extract. Frontiers in Plant Science. 2023;14:1114172. doi:10.3389/FPLS.2023.1114172/BIBTEX
  70. Usai R, Majoni S, Rwere F. Natural products for the treatment and management of diabetes mellitus in Zimbabwe-a review. Frontiers in Pharmacology. 2022;13(August):1–21. doi:10.3389/fphar.2022.980819
  71. Vezzulli F, Rocchetti G, Lambri M, Lucini L. Metabolomics Combined with Sensory Analysis Reveals the Impact of Different Extraction Methods on Coffee Beverages from Coffea arabica and Coffea canephora var. Robusta. Foods. 2022;11(6):807. doi:10.3390/FOODS11060807/S1
  72. Virtanen JK, Tuomainen TP, Voutilainen S. Dietary intake of choline and phosphatidylcholine and risk of type 2 diabetes in men: The Kuopio Ischaemic Heart Disease Risk Factor Study. European Journal of Nutrition. 2020;59(8):3857–3861. doi:10.1007/s00394-020-02223-2
  73. Vitzthum OG, Werkhoff P, Hubert P. New Volatile Constituents of Black Tea Aroma. Journal of Agricultural and Food Chemistry. 1975;23(5):999–1003. doi:10.1021/JF60201A032/ASSET/JF60201A032.FP.PNG_V03
  74. Vivó-Barrachina L, Rojas-Chacón MJ, Navarro-Salazar R, et al. The Role of Natural Products on Diabetes Mellitus Treatment: A Systematic Review of Randomized Controlled Trials. Pharmaceutics. 2022;14(1):1–12. doi:10.3390/pharmaceutics14010101
  75. Wahidin M, Achadi A, Besral B, et al. Projection of diabetes morbidity and mortality till 2045 in Indonesia based on risk factors and NCD prevention and control programs. Scientific Reports 2024 14:1. 2024;14(1):1–17. doi:10.1038/s41598-024-54563-2
  76. Wei-Lung Chou. Investigation of indium ions removal from aqueous solutions using spent coffee grounds. International Journal of Physical Sciences. 2012;7(16):2445–2454. doi:10.5897/ijps12.192
  77. Windarsih A, Rohman A, Riswanto FDO, Dachriyanus D, Yuliana ND, Bakar NKA. The Metabolomics Approaches Based on LC-MS/MS for Analysis of Non-Halal Meats in Food Products: A Review. Agriculture. 2022;12(7):984.
  78. Xie HG, Chen H, Cao B, Zhang HW, Zou ZM. Cytotoxic Germacranolide Sesquiterpene from Inula cappa. Chemical and Pharmaceutical Bulletin. 2007;55(8):1258–1260. doi:10.1248/CPB.55.1258
  79. Yan Y, Wu T, Zhang M, Li C, Liu Q, Li F. Prevalence, awareness and control of type 2 diabetes mellitus and risk factors in Chinese elderly population. BMC Public Health. 2022;22(1):1–6. doi:10.1186/S12889-022-13759-9/PEER-REVIEW
  80. Yang J, Tobias DK, Li S, et al. Habitual coffee consumption and subsequent risk of type 2 diabetes in individuals with a history of gestational diabetes – a prospective study. American Journal of Clinical Nutrition. 2022;116(6):1693–1703. doi:10.1093/ajcn/nqac241
  81. Yoshinari O, Igarashi K. Anti-diabetic effect of pyroglutamic acid in type 2 diabetic Goto-Kakizaki rats and KK-Ay mice. British Journal of Nutrition. 2011;106(7):995–1004. doi:10.1017/S0007114511001279
  82. Zhang D, Vega FE, Infante F, Solano W, Johnson ES, Meinhardt LW. Accurate differentiation of green beans of arabica and robusta coffee using nanofluidic array of Single Nucleotide Polymorphism (SNP) markers. Journal of AOAC International. 2020;103(2):315–324. doi:10.1093/JAOCINT/QSZ002
  83. Zhang Y, Morikawa T, Nakamura S, et al. Bioactive constituents from chinese natural medicines. XXV. New flavonol bisdesmosides, sarmenosides I, II, III, and IV, with hepatorprotective activity from Sedum Sarmentosum (Crassulaceae). Heterocycles. 2007;71(7):1565–1576. doi:10.3987/COM-07-11050
  84. Zheng T, Cheng LZ, Yan YM, et al. Two New Triterpenoids from the Roots of Codonopsis pilosula. Molecules 2018, Vol 23, Page 383. 2018;23(2):383. doi:10.3390/MOLECULES23020383
Language: English
Page range: 1 - 12
Submitted on: Nov 29, 2024
Accepted on: Jul 9, 2025
Published on: Aug 15, 2025
Published by: Comenius University in Bratislava, Faculty of Pharmacy
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2025 Florentinus Dika Octa Riswanto, Nicolaus De Deo Adventra, Gregorius Seno Priyambodo, Titus Marcel Kusraynaldi, Angel Yemima Srininta Br Sembiring, Theresia Niken Larasati, Anjar Windarsih, Stephanus Satria Wira Waskitha, Michael Raharja Gani, Enade Perdana Istyastono, published by Comenius University in Bratislava, Faculty of Pharmacy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.