Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

FTIR spectral and functional groups identification_
| No | Wavenumbers (cm−1) | Functional groups | Related compounds/materials | References | |
|---|---|---|---|---|---|
| Identified | Literature | ||||
| 1 | 3290 | 3660–2970 | OH (phenol, alcohol, carboxylic acid) | Phenolic compound | Abreu et al., 2020 |
| 2 | 2924 | 2925–2908 | C=O and C–H | Lipid | Sahachairungrueng et al., 2022 |
| 3 | 2854 | 2858 | C–H methyl | Caffeine | Silva et al., 2018 |
| 4 | 1743 | 1745 | Carboxyl linkage derived from xanthine derivatives | Caffeine | Wei-Lung Chou, 2012 |
| 5 | 1643 | 1650–1580 | C=C phenyl ring | Chlorogenic acid isomers | Liang et al., 2016 several indices of browning and subsequent antioxidant values. Principal component analysis was used to interpret the correlations between physiochemical and antioxidant parameters of coffee. CGA isomer content was positively correlated (p < 0.001 Simatupang et al., 2023 |
| 6 | 1149 | 1176–1106 | C–OH cyclohexane | Chlorogenic acid isomers | Abreu et al., 2020 Simatupang et al., 2023 |
| 7 | 1076 | 1077 | C–O–C of hydrogen bonds between starch molecules | Starch | Abdullah et al., 2019 |
| 8 | 999 | 1157–982 | C–O and C–C stretching with COH contributions | Starch | Pozo et al., 2018 |
| 9 | 930 | 920 | C–O–C ring vibration of carbohydrate | Starch | Abdullah et al., 2018 |
| 10 | 860 | 856 | C–O–C ring vibration of carbohydrate | Starch | Abdullah et al., 2018 |
Major metabolite compounds identified using LC-HRMS analysis_
| No. | Name | Formula | Calc. MW | RT (min) | Area (%) | References |
|---|---|---|---|---|---|---|
| 1 | 1,3,7-Trimethyl-2,3,6,7-tetrahydro-1H-purine-2,6-dione | C8H10N4O2 | 194.080 | 4.027 | 61.344 | Mazzafera et al., 1994 |
| 2 | Methyl isonicotinate | C7H7NO2 | 137.048 | 0.809 | 13.210 | Liu et al., 2009 |
| 3 | 1-Stearoylglycerol | C21H42O4 | 358.307 | 15.438 | 3.910 | Ma et al., 2002 |
| 4 | 4-Hydroxycoumarin | C9H6O3 | 162.032 | 3.712 | 2.356 | Vezzulli et al., 2022 |
| 5 | 3-Hydroxy-2-methylpyridine | C6H7NO | 109.053 | 0.803 | 2.138 | Subarnas et al., 1991 |
| 6 | Maltol | C6H6O3 | 126.032 | 2.245 | 1.922 | Stoffelsma et al., 1968 |
| 7 | Choline | C5H13NO | 103.100 | 0.764 | 1.561 | Shirley & Chapple, 2003 |
| 8 | (1R,3R,4S,5S)-4-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-1,3,5-trihydroxycyclohexane-1-carboxylic acid | C16H18O9 | 354.095 | 3.705 | 1.369 | Moreira et al., 2005 |
| 9 | 1-Linoleoyl glycerol | C21H38O4 | 354.276 | 14.165 | 0.887 | Tran et al., 2023 |
| 10 | Picolinic acid | C6H5NO2 | 123.032 | 1.014 | 0.589 | Du et al., 2007 |
| 11 | NP-011220 | C11H18N2O2 | 210.137 | 5.313 | 0.585 | Zhang et al., 2007 |
| 12 | 3-[(19Z)-15,16-dihydroxy-19-dotriaconten-1-yl]-5-methyl-2(5H)-furanone | C37H68O4 | 576.511 | 21.305 | 0.522 | Gleye et al., 2000 |
| 13 | d-(+)-Pyroglutamic acid | C5H7NO3 | 129.043 | 1.053 | 0.512 | Osborne et al., 1994 |
| 14 | Ethyl palmitoleate | C18H34O2 | 282.255 | 15.606 | 0.465 | Ekpendu et al., 1993 |
| 15 | 2,2,6,6-Tetramethyl-1-piperidinol (TEMPO) | C9H19NO | 157.147 | 8.994 | 0.442 | Aprilia et al., 2025 |
| 16 | N,N-dimethylaniline | C8H11N | 121.089 | 1.135 | 0.435 | Thomas & Bassols, 1992 |
| 17 | (1S,3R,4R,5R)-1,3,4-trihydroxy-5-{[(2E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}cyclohexane-1-carboxylic acid | C17H20O9 | 368.111 | 5.053 | 0.428 | Moreira et al., 2005 |
| 18 | Guvacoline | C7H11NO2 | 141.079 | 1.766 | 0.402 | Holdsworth et al., 1998 |
| 19 | 3-Hydroxypyridine | C5H5NO | 95.037 | 0.801 | 0.384 | Miyazawa et al., 1983 |
| 20 | Monoolein | C21H40O4 | 356.292 | 14.781 | 0.362 | Okuyama et al., 2001 |
| 21 | 7-Hydroxy-6-methoxy-2H-chromen-2-one | C10H8O4 | 192.042 | 5.690 | 0.329 | Komissarenko & Kovalev, 1992 |
| 22 | NP-019811 | C6H7NO2 | 125.048 | 1.035 | 0.325 | Zheng et al., 2018 |
| 23 | Sitostenone | C29H48O | 412.370 | 19.156 | 0.282 | Xie et al., 2007 |
| 24 | o-Toluidine | C7H9N | 107.074 | 1.133 | 0.273 | Vitzthum et al., 1975 |