Have a personal or library account? Click to login
Amelioration of the Abnormalities Associated with Metabolic Syndrome by L-Norvaline in Hyperlipidemic Diabetic Rats Cover

Amelioration of the Abnormalities Associated with Metabolic Syndrome by L-Norvaline in Hyperlipidemic Diabetic Rats

By: S. Dobhal,  S. Baliyan,  MF. Singh,  S. Bisht and  S. Setya  
Open Access
|Feb 2022

References

  1. Arita Y, Kihara S, Ouchi N, et al. Paradoxical Decrease of an Adipose-Specific Protein, Adiponectin, in Obesity. Biochem Biophys Res Commun. 1999; 257: 79–83.
  2. Azimi Nezhad M, Ghayour-Mobarhan M, Parizadeh SMR, et al. Metabolic syndrome: Its prevalence and relationship to socio-economic parameters in an Iranian population. Nutr Metab Cardiovasc Dis. 2008;18: e11–2.
  3. Bucolo G, David H. Quantitative determination of serum triglycerides by the use of enzymes. Clin. Chem. 1973; 19:476–82.
  4. Castelli WP, Doyle JT, Gordon T, et al. HDL cholesterol and other lipids in coronary heart disease. The cooperative lipoprotein phenotyping study. Circulation. 1977; 55:767–72.
  5. De A, Singh MF, Singh V, Ram V, Bisht S. Treatment effect of l-Norvaline on the sexual performance of male rats with streptozotocin induced diabetes. Eur J Pharmacol. 2016; 771:247–54.
  6. Fain JN, Kanu A, Bahouth SW, Cowan GSM, Hiler ML. Inhibition of leptin release by atrial natriuretic peptide (ANP) in human adipocytes. Biochem Pharmacol. 2003; 65(11):1883–8.
  7. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and Management of the Metabolic Syndrome: An American Heart Association/National Heart, Lung and Blood Institute scientific statement. Circulation. 2005;112: 2735–52.
  8. Guerra J, De Jesus A, Santiago-Borrero P, Roman-Franco A, Rodríguez E, Crespo MJ. Plasma nitric oxide levels used as an indicator of doxorubicin-induced cardiotoxicity in rats. Hematol J. 2005; 5: 584–8.
  9. Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008; 9:367–77.
  10. Gulen MI, Bagla AG, Yavuz O, Hismiogullar AA. Histopathological changes in rat pancreas and skeletal muscle associated with high fat diet induced insulin resistance. Biotech Histochem. 2015; 90(7): 495–505.
  11. Hong MY, Beidler J, Hooshmand S, Figueroa A, Kern M. Watermelon and l-arginine consumption improve serum lipid profile and reduce inflammation and oxidative stress by altering gene expression in rats fed an atherogenic diet. Nutr Res. 2018;58:46–54.
  12. Hu S, Han M, Rezaei A, Li D, Wu G, Ma X. L-Arginine Modulates Glucose and Lipid Metabolism in Obesity and Diabetes. Curr. Protein Pept. Sci. 2017; 18:599–608.
  13. Kimura E, Matsumoto K, Samori T, Kato S, Kawahara T. One-step enzyme-linked immunosorbent assay (ELISA) for measurement of serum free leptin. Clin Chim Acta. 2000; 296: 45–57.
  14. Liang M, Wang Z, Li H, et al. L-Arginine induces antioxidant response to prevent oxidative stress via stimulation of glutathione synthesis and activation of Nrf2 pathway. Food Chem Toxicol. 2018;115:315–28.
  15. MacDonald MJ, Gapinski JP. A rapid ELISA for measuring insulin in a large number of research samples. Metabolism. 1989; 38: 450–2.
  16. Masi S, Colucci R, Duranti E, et al. Aging modulates the influence of arginase on endothelial dysfunction in obesity. Arterioscler Thromb Vasc Biol. 2018;38: 2474–83.
  17. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985; 28:412–9.
  18. McCarty MF. AMPK activation may suppress hepatic production of C-reactive protein by stimulating nitric oxide synthase. Med. Hypotheses. 2004;63:328–33.
  19. Miller NE, Thelle DS, Forde OH, Mjos OD. The Tromsø heart-study. High-density lipoprotein and coronary heart-disease: a prospective case-control study. Lancet. 1977;1: 965–8.
  20. Mohandas J, Marshall JJ, Duggin GG, Horvath JS, Tiller DJ. Low activities of glutathione-related enzymes as factors in the genesis of urinary bladder cancer. Cancer Res. 1984; 44:5086–91.
  21. Moon J, Do HJ, Cho Y, Shin MJ. Arginase inhibition ameliorates hepatic metabolic abnormalities in obese mice. PLoS One. 2014; 9:1–10.
  22. Moreno-Fernández S, Garcés-Rimón M, Vera G, Astier J, Landrier JF, Miguel M. High fat/high glucose diet induces metabolic syndrome in an experimental rat model. Nutrients. 2018;10:1–15.
  23. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 95: 351–8.
  24. Ouellet V, Weisnagel SJ, Joanisse DR, et al. Beneficial Impact of Cod Protein, l-Arginine, and Other Amino Acids on Insulin Sensitivity. In: Patel VB, Preedy VR, Rajendram R, editors. L-Arginine in Clinical Nutrition. Cham: Springer International Publishing; 2017. p. 433–47.
  25. Panchal SK, Poudyal H, Iyer A, et al. High-carbohydrate high-fat diet-induced metabolic syndrome and cardiovascular remodeling in rats. J Cardiovasc Pharmacol. 2011;57:51–64.
  26. Panda V, Mistry K, Sudhamani S, Nandave M, Ojha SK. Amelioration of Abnormalities Associated with the Metabolic Syndrome by Spinacia oleracea (Spinach) Consumption and Aerobic Exercise in Rats. Oxid Med Cell Longev. 2017; 1: 1–15.
  27. Pereira RM, Botezelli JD, da Cruz Rodrigues KC, et al. Fructose consumption in the development of obesity and the effects of different protocols of physical exercise on the hepatic metabolism. Nutrients. 2017; 9:1–21.
  28. Rabelo LA, Ferreira FO, Nunes-Souza V, Fonseca LJS Da, Goulart MOF. Arginase as a Critical Prooxidant Mediator in the Binomial Endothelial Dysfunction-Atherosclerosis. Oxid Med Cell Longev. 2015; 2:1–12.
  29. Schalla WO, Arko RJ, Thompson SE. Evaluation of a C-reactive protein latex agglutination detection test with sera from patients with sexually transmitted diseases. J Clin Microbiol. 1984; 20: 1171–3.
  30. Sun M, Zigman S. An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation. Anal Biochem. 1978; 90:81–9.
  31. Trinder P. Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol. 1969; 22:158–61.
  32. Zhou J, Zeng Q, Cai D, Zeng X, Chen Y, Gan H et al. Evaluation of type 2 diabetic mellitus animal models via interactions between insulin and mitogen-activated protein kinase signalling pathways induced by a high fat and sugar diet and streptozotocin. Mol Med Rep. 2018; 17: 5132–5142.
Language: English
Page range: 16 - 26
Submitted on: Apr 3, 2021
Accepted on: Oct 1, 2021
Published on: Feb 9, 2022
Published by: Comenius University in Bratislava, Faculty of Pharmacy
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2022 S. Dobhal, S. Baliyan, MF. Singh, S. Bisht, S. Setya, published by Comenius University in Bratislava, Faculty of Pharmacy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.