Have a personal or library account? Click to login
Thermoelectric Properties of Ductile Doped Ag2S for Low Power Factor Application Cover

Thermoelectric Properties of Ductile Doped Ag2S for Low Power Factor Application

Open Access
|May 2024

References

  1. GOLDSMID, H. J.: (2016) The Thermoelectric and Related Effects. In: Introduction to Thermoelectricity. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1–7
  2. LUNDSTROM, M. ‒ JEONG, C.: (2013) Near-equilibrium transport: fundamentals and applications. World Scientific, Singapore ; Hackensack, NJ
  3. CHEN, L. ‒ LIU, R. ‒ SHI, X.: (2021) General principles of thermoelectric technology. In: Thermoelectric Materials and Devices. Elsevier, pp 1–18
  4. GOLDSMID, H. J.: (2016) Thermoelectric Properties of Metals and Semiconductors. In: Introduction to Thermoelectricity. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 25–44
  5. RIFFAT, S.B. ‒ MA, X.: (2003) Thermoelectrics: a review of present and potential applications. Applied Thermal Engineering 23:913–935. https://doi.org/10.1016/S1359-4311(03)00012-7
  6. BELL, L. E.: (2008) Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 321:1457–1461. https://doi.org/10.1126/science.1158899
  7. MUHAMAD ZUHUD, A. ‒ MOCHAMMAD, F. ‒ WIDAYAT, W.: (2018) Thermoelectric application in energy conservation. E3S Web Conf 73:01009. https://doi.org/10.1051/e3sconf/20187301009
  8. LIU, Z. ‒ TIAN, B. ‒ LI, Y. et al.: (2023) Evolution of Thermoelectric Generators: From Application to Hybridization. Small 2304599. https://doi.org/10.1002/smll.202304599
  9. LV, H. ‒ LIANG, L. ‒ ZHANG, Y. et al.: (2021) A flexible spring-shaped architecture with optimized thermal design for wearable thermoelectric energy harvesting. Nano Energy 88:106260. https://doi.org/10.1016/j.nanoen.2021.106260
  10. JAYATHILAKA WADM ‒ QI, K. ‒ QIN, Y. et al.: (2019) Significance of Nanomaterials in Wearables: A Review on Wearable Actuators and Sensors. Adv Mater 31:1805921. https://doi.org/10.1002/adma.201805921
  11. WOLF, M. ‒ HINTERDING, R. ‒ FELDHOFF, A.: (2019) High Power Factor vs. High zT—A Review of Thermoelectric Materials for High-Temperature Application. Entropy 21:1058. https://doi.org/10.3390/e21111058
  12. TIAN, Z. ‒ LEE, S. ‒ CHEN, G.: (2014) COMPREHENSIVE REVIEW OF HEAT TRANSFER IN THERMOELECTRIC MATERIALS AND DEVICES. Annual Rev Heat Transfer 17:425–483. https://doi.org/10.1615/AnnualRevHeatTransfer.2014006932
  13. ZHU, M. ‒ SHI, X-L. ‒ WU, H. et al.: (2023) Advances in Ag2S -based thermoelectrics for wearable electronics: progress and perspective. Chemical Engineering Journal 473:145236. https://doi.org/10.1016/j.cej.2023.145236
  14. SINGH, J. ‒ VERMA, S. S.: (2013) Global Journal of Researches in Engineering Electrical and Electronics Engineering. Comparison of Figure of Merit for Some Common Thermocouples in the High Temperature Range 11:1–7
  15. CHEN, L. ‒ LIU, R. ‒ SHI, X.: (2021) Strategies to optimize thermoelectric performance. In: Thermoelectric Materials and Devices. Elsevier, pp 19–50
  16. GIRI, K. ‒ WANG, Y-L. ‒ CHEN, T-H. ‒ CHEN, CH.: (2022) Challenges and strategies to optimize the figure of merit: Keeping eyes on thermoelectric metamaterials. Materials Science in Semiconductor Processing 150:106944. https://doi.org/10.1016/j.mssp.2022.106944
  17. TRIPATHI, M. N. ‒ BHANDARI, C. M.: (2005) Material parameters for thermoelectric performance. Pramana - J Phys 65:469–479. https://doi.org/10.1007/BF02704204
  18. MEHDIZADEH DEHKORDI, A. ‒ ZEBARJADI, M. ‒ HE, J. ‒ TRITT, T. M.: (2015) Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials. Materials Science and Engineering: R: Reports 97:1–22. https://doi.org/10.1016/j.mser.2015.08.001
  19. WEI, J. ‒ YANG, L. ‒ MA, Z., et al.: (2020) Review of current high-ZT thermoelectric materials. J Mater Sci 55:12642–12704. https://doi.org/10.1007/s10853-020-04949-0
  20. PAL’YANOVA, G. A. ‒ CHUDNENKO, K.V. ‒ ZHURAVKOVA, T.V.: (2014) Thermodynamic properties of solid solutions in the system Ag2S – Ag2Se. Thermochimica Acta 575:90–96. https://doi.org/10.1016/j.tca.2013.10.018
  21. CHEN, H. ‒ WEI, T. ‒ ZHAO, K., et al.: (2021) Room-temperature plastic inorganic semiconductors for flexible and deformable electronics. InfoMat 3:22–35. https://doi.org/10.1002/inf2.12149
  22. LIANG, J. ‒ WANG, T. ‒ QIU, P., et al.: (2019) Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices. Energy Environ Sci 12:2983–2990. https://doi.org/10.1039/C9EE01777A
  23. WANG, H. ‒ MA, H. ‒ DUAN, B., et al.: (2021) High-Pressure Rapid Preparation of High-Performance Binary Silver Sulfide Thermoelectric Materials. ACS Appl Energy Mater 4:1610–1618. https://doi.org/10.1021/acsaem.0c02810
  24. TARACHAND, MUKHERJEE, B. ‒ SAXENA, M., et al.: (2019) Ag-Nanoinclusion-Induced Enhanced Thermoelectric Properties of Ag 2 S. ACS Appl Energy Mater 2:6383–6394. https://doi.org/10.1021/acsaem.9b01016
  25. TOBY, B. H. ‒ VON DREELE, R. B.: (2013) GSASII : the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr 46:544–549. https://doi.org/10.1107/S0021889813003531
  26. GRAŽULIS, S. ‒ DAŠKEVIČ, A. ‒ MERKYS, A., et al.: (2012) Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Research 40:D420–D427. https://doi.org/10.1093/nar/gkr900
  27. GAYNER, C. ‒ KAR, K. K.: (2016) Recent advances in thermoelectric materials. Progress in Materials Science 83:330–382. https://doi.org/10.1016/j.pmatsci.2016.07.002
DOI: https://doi.org/10.2478/aei-2024-0002 | Journal eISSN: 1338-3957 | Journal ISSN: 1335-8243
Language: English
Page range: 9 - 15
Submitted on: Feb 16, 2024
Accepted on: Apr 8, 2024
Published on: May 30, 2024
Published by: Technical University of Košice
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Gabriela Hricková, František Mihok, Peter Lukács, Róbert Džunda, published by Technical University of Košice
This work is licensed under the Creative Commons Attribution 4.0 License.