Have a personal or library account? Click to login
Influence of Multiple Reflows and Surface Finishes on Solder Joint Resistivity Cover

Influence of Multiple Reflows and Surface Finishes on Solder Joint Resistivity

Open Access
|Apr 2022

References

  1. [1] PIETRIKOVA, A. – DURISIN, J. – MACH, P.: Diagnostika a Optimalizacia Pouzitia Ekologickych Materialov pre Vodive Spajanie v Elektronike, Technical University of Kosice, 2010.
  2. [2] SIEWIOREK, A.: Effects of PCB Substrate Surface Finish and Flux on Solderability of Lead-Free SAC305 Alloy, Journal of Materials Engineering and Performance, no. 22, pp. 2247–2252, Feb. 2013.10.1007/s11665-013-0492-4
  3. [3] MIN, Z. – QIU, Y.: Interfacial reaction and IMCs formation between Sn-0.7Cu solder and Cu substrate during reflow soldering, 16th International Conference on Electronic Packaging Technology (ICEPT), pp. 1367-1370, 2015.10.1109/ICEPT.2015.7236833
  4. [4] WANG, F.: Wettability, Interfacial Behavior and Joint properties of Sn-15Bi Solder, Journal of Electronic materials, vol. 48, pp. 6835-6848, 2019.10.1007/s11664-019-07473-3
  5. [5] PANDHER, R. – PACHAMUTHU, A.: Effect of multiple reflow cycles on solder joint formation and reliability, Proceedings of the SMTA International Conference Proceedings, vol. 24, p. 28, 2010.
  6. [6] RABIATUL ADAWIYAH, M. A.: Impact of multiple reflow on intermetallic compound of nickel-doped tin-silver-copper on ENImAg substrate, Materialwiss, Werkstofftech, vol. 51, no. 6, pp. 780-786 2020.10.1002/mawe.201900246
  7. [7] LIVOVSKY, L. – PIETRIKOVA, A.: Real-time profiling of reflow process in VPS chamber, Soldering and Surface Mount Technology, vol. 29, no. 1, pp. 42-48, 2017.10.1108/SSMT-10-2016-0026
  8. [8] WIRTH, V. – RENDL, K. – STEINER, F.: Effect of multiple reflow cycles on intermetallic compound creation, 38th International Spring Seminar on Electronics technology (ISSE), Eger, Hungary, pp. 226-230, May 2015.10.1109/ISSE.2015.7247995
  9. [9] KAHAR, H.: Influence of Second Reflow on the Intermetallic Compound Growth with Different Surface Finish, Key Engineering Materials, vol. 701, pp. 127-131, July 2016.10.4028/www.scientific.net/KEM.701.127
  10. [10] HA, S.: Effect of multiple reflows on interfacial reactions and shear strength of Sn-Ag electroplated solder bumps for flip chip, Materials Science, vol. 87, pp. 517-521, 2010.10.1016/j.mee.2009.07.015
  11. [11] RASBUDIN, J. I.: The effect of multiple reflow on intermetallic layer of Sn-4.0AgCu/Cu by using microwave and reflow soldering, Material Science and Engineering, vol. 238, 012014, 2017.10.1088/1757-899X/238/1/012014
  12. [12] CHAR, M.: Retardation Effect of Tin Multilayer on Sn-3.0Ag-0.5Cu (SAC305)-Based Solder Joint Interface, Journal of Material Engineering and Performance, vol. 29, pp. 2305-2315, Apr. 2020.10.1007/s11665-020-04730-z
  13. [13] LIU, D. S. – NI, C. Y.: A study on the electrical resistance of solder joint interconnections, Microelectronic Engineering, vol. 63, pp. 363-372, 2002.10.1016/S0167-9317(02)00551-8
  14. [14] GERSHMAN, I. – BERNSTEIN, J. B.: Solder-Joint Quantitative Crack Analysis – Ohmic Resistance Approach, IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 2, pp. 748-765, 2012.10.1109/TCPMT.2012.2188894
  15. [15] EL-KHAWAS, E. H.: Electrical resistivity and creep behaviour of hypoeutectic Sn-0.5Cu based solders for flip chip technology, Journal of Materials Science: Materials in Electronics, vol. 28, pp. 12176-12183, 2017.10.1007/s10854-017-7032-1
  16. [16] HIRMAN, M.: Electrical resistance of Solder Joints on Conductive Ribbons, 43rd International Spring Seminar on Electronics Technology (ISSE), Kosice, pp. 1-5, 2020.10.1109/ISSE49702.2020.9120981
  17. [17] FIELDS, R. J. – LOW, S. R. – LUCEY, G. K.: Physical and Mechanical Properties Of Intermetallic Compounds Commonly Found In Solder Joints, NIST, 2002.
  18. [18] KOO, J. M. – LEE, Y. H. – KIM, S. K. – JEONG, M.Y. – JUNG, S. B.: Mechanical and electrical properties of Sn-3.5Ag solder/Cu BGA packages during multiple reflows, Key Engineering Materials, vol. 297-300, pp. 801-806, 2005.10.4028/www.scientific.net/KEM.297-300.801
  19. [19] SOHN, Y.: Effect of Morphological Change of Ni3Sn4 Intermetallic Compounds on the Growth Kinetics in Electroless Ni-P/Sn-3.5Ag Solder Joint, Metallurgical and Materials Transactions, vol. 51, pp. 2905–2914, 2020.10.1007/s11661-020-05739-8
  20. [20] FENG, J. – HANG, C. – TIAN, Y. et al.: Growth kinetics of Cu6Sn5 intermetallic compound in Cu-liquid Sn interfacial reaction enhanced by electric current, Scientific Reports vol. 8, no. 1, 2018.10.1038/s41598-018-20100-1578886829379073
  21. [21] SHIKUN, M. A. – VRUBLEVSKAYA, O. N. – VOROBYOVA T. N.: Functions of 2-butyne-1,4-diol in the process of tin-silver alloy electrodeposition from the acidic sulfate solution, Surfaces and Interfaces, vol. 24, pp. 101059, 2021.10.1016/j.surfin.2021.101059
  22. [22] LENTZ, T.: How Does Surface Finish Affect Solder Paste Performance, FCT Assembly, Greeley, USA, Final report, 2021. Available online: https://fctsolder.com/wp-content/uploads/2018/10/2018-SMTAI-How-Does-Surface-Finish-Affect-Solder-Paste-Performance.pdf
  23. [23] SMITH, D. – SIEWERT, T. – STEPHEN, L. – MADENI, J.: Database for Solder Properties With Emphasis on New Lead-Free Solders, 2002. Available online: https://www.msed.nist.gov/solder/NIST_LeadfreeSolder_v4.pdf
  24. [24] FIELDS, R. J. – LOW, S. R.: Physical and mechanical properties of intermetallic compounds commonly found in solder joints, NIST, Metallurgy Division and G. K. Lucey, Jr. Harry Diamond Laboratories, Published in Metal Science of Joining, Proceedings of TMS Symposium, Cincinnati, Oct 20-24, 1991.
DOI: https://doi.org/10.2478/aei-2021-0001 | Journal eISSN: 1338-3957 | Journal ISSN: 1335-8243
Language: English
Page range: 3 - 8
Submitted on: Feb 2, 2022
Accepted on: Mar 8, 2022
Published on: Apr 13, 2022
Published by: Technical University of Košice
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Daniel Dzivy, Alena Pietrikova, Olga Vrublevskaya, Marina A. Shikun, published by Technical University of Košice
This work is licensed under the Creative Commons Attribution 4.0 License.