Have a personal or library account? Click to login
Enhancing Microstructural and Thermal Properties of Tinipd Shape Memory Alloys Through Copper Addition Cover

Enhancing Microstructural and Thermal Properties of Tinipd Shape Memory Alloys Through Copper Addition

Open Access
|Mar 2025

References

  1. İ. Özkul, M. A. Kurgun, E. Kalay, C. A. Canbay, and K. Aldaş, “Shape memory alloys phenomena: classification of the shape memory alloys production techniques and application fields,” Eur. Phys. J. Plus, vol. 134, no. 12, p. 585, 2019.
  2. K. Tanaka, S. Kobayashi, and Y. Sato, “Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys,” Int. J. Plast., vol. 2, no. 1, pp. 59–72, 1986.
  3. V. Pushin, N. Kuranova, E. Marchenkova, and A. Pushin, “Design and development of Ti–Ni, Ni– Mn–Ga and Cu–Al–Ni-based alloys with high and low temperature shape memory effects,” Materials, vol. 12, no. 16, p. 2616, 2019.
  4. C. Velmurugan, V. Senthilkumar, S. Dinesh, and D. Arulkirubakaran, “Machining of NiTi-shape memory alloys-A review,” Mach. Sci. Technol., vol. 22, no. 3, pp. 355–401, May 2018, doi: 10.1080/10910344.2017.1365894.
  5. M. Kaftaranova, V. Hodorenko, S. Anikeev, N. Artyukhova, A. V. Shabalina, and V. Gunther, “Investigation of the effect of copper addition on physical and mechanical properties of TiNi-Cu porous alloy,” Metals, vol. 12, no. 10, p. 1696, 2022.
  6. S. U. Rehman et al., “Influence of Cu addition on transformation temperatures and thermal stability of TiNiPd high temperature shape memory alloys,” Proc. Inst. Mech. Eng. Part J. Mater. Des. Appl., vol. 233, no. 5, pp. 800–808, May 2019, doi: 10.1177/1464420717702679.
  7. M. Khan, H. Y. Kim, T. Nam, and S. Miyazaki, “Effect of Cu addition on the high temperature shape memory properties of Ti50Ni25Pd25 alloy,” J. Alloys Compd., vol. 577, pp. S383–S387, 2013.
  8. M. I. Khan, H. Y. Kim, and S. Miyazaki, “A Review of TiNiPdCu Alloy System for High Temperature Shape Memory Applications,” Shape Mem. Superelasticity, vol. 1, no. 2, pp. 85–106, 2015, doi: 10.1007/s40830-015-0019-y.
  9. M. I. Khan, H. Y. Kim, Y. Namigata, T. Nam, and S. Miyazaki, “Combined effects of work hardening and precipitation strengthening on the cyclic stability of TiNiPdCu-based high-temperature shape memory alloys,” Acta Mater., vol. 61, no. 13, pp. 4797–4810, 2013.
  10. S. ur Rehman, M. Khan, A. N. Khan, L. Ali, S. I. H. Jaffery, and M. Khurram, “Quaternary alloying of copper with Ti50Ni25Pd25 high temperature shape memory alloys,” Mater. Sci. Eng. A, vol. 763, p. 138148, 2019.
  11. R. Radhamani and M. Balakrishnan, “The effect of copper on phase transformation, microstructure and mechanical characterization of Ni50-x Ti50 Cux shape-memory alloy,” Proc. Inst. Mech. Eng. Part J. Mater. Des. Appl., vol. 237, no. 5, pp. 1137–1145, 2023, doi: 10.1177/14644207221137257.
  12. D. Kim, C. Park, J. Lee, K. Hong, Y. Park, and W. Lee, “Microstructure, shape memory behavior and mechanical properties of hot rolled Fe-17Mn-5Si-5Cr-4Ni-0.3 C-1Ti shape memory alloy,” Eng. Struct., vol. 239, p. 112300, 2021.
  13. J. Bhagyaraj, K. V. Ramaiah, C. N. Saikrishna, and S. K. Bhaumik, “Behavior and effect of Ti2Ni phase during processing of NiTi shape memory alloy wire from cast ingot,” J. Alloys Compd., vol. 581, pp. 344–351, 2013.
  14. G. Tadayyon et al., “Effect of different stages of deformation on the microstructure evolution of Ti-rich NiTi shape memory alloy,” Mater. Charact., vol. 125, pp. 51–66, 2017.
  15. H. Z. Lu et al., “Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting,” J. Mater. Sci. Technol., vol. 101, pp. 205–216, 2022.
  16. Y. Chen, C. Ortiz Rios, B. McLain, J. W. Newkirk, and F. Liou, “TiNi-based Bi-metallic shape-memory alloy by laser-directed energy deposition,” Materials, vol. 15, no. 11, p. 3945, 2022.
  17. S. Ahmad et al., “Innovations in Additive Manufacturing of Shape Memory Alloys: Alloys, Microstructures, Treatments, Applications,” J. Mater. Res. Technol., vol. 32, pp. 4136-4197, 2024, https://www.sciencedirect.com/science/article/pii/S2238785424020052
  18. S. M. R. Varukuti, K. N. Chaithanya Kumar, and K. S. Suresh, “Effect of rolling temperature and annealing on grain refinement in TiNiCu shape memory alloys,” J. Mater. Eng. Perform., pp. 1–13, 2023.
  19. Y.-T. Hsu, C.-T. Wu, and C.-H. Chen, “Nanoscale-precipitate-strengthened (Ni, Cu)-rich TiNiCu shape memory alloy with stable superelasticity and elastocaloric performance,” J. Alloys Compd., vol. 997, p. 174937, 2024.
  20. M. Ebrahimi, S. Attarilar, C. Gode, S. R. Kandavalli, M. Shamsborhan, and Q. Wang, “Conceptual analysis on severe plastic deformation processes of shape memory alloys: mechanical properties and microstructure characterization,” Metals, vol. 13, no. 3, p. 447, 2023.
  21. S. ur Rehman, M. Khan, A. N. Khan, M. I. Khan, L. Ali, and S. H. I. Jaffery, “Effect of precipitation hardening and thermomechanical training on microstructure and shape memory properties of Ti50Ni15Pd25Cu10 high temperature shape memory alloys,” J. Alloys Compd., vol. 616, pp. 275–283, 2014.
  22. M. I. Khan, H. Y. Kim, T. Nam, and S. Miyazaki, “Formation of nanoscaled precipitates and their effects on the high-temperature shape-memory characteristics of a Ti50Ni15Pd25Cu10 alloy,” Acta Mater., vol. 60, no. 16, pp. 5900–5913, 2012.
  23. T. H. Nam, T. Saburi, and K. Shimizu, “Cu-content dependence of shape memory characteristics in Ti–Ni–Cu alloys,” Mater. Trans. JIM, vol. 31, no. 11, pp. 959–967, 1990.
  24. S. ur Rehman et al., “Transformation behavior and shape memory properties of Ti50Ni15Pd25Cu10 high temperature shape memory alloy at various aging temperatures,” Mater. Sci. Eng. A, vol. 619, pp. 171–179, 2014.
DOI: https://doi.org/10.2478/adms-2025-0004 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 66 - 81
Submitted on: Oct 24, 2024
Accepted on: Jan 6, 2025
Published on: Mar 26, 2025
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Abid Hussain, Afzal Khan, Muhammad Imran Khan, Saif Ur Rehman, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.