Have a personal or library account? Click to login
Assessment of Corrosive Behaviour and Microstructure Characterization of Hybrid Friction Stir Welded Martensitic Stainless Steel Cover

Assessment of Corrosive Behaviour and Microstructure Characterization of Hybrid Friction Stir Welded Martensitic Stainless Steel

Open Access
|Dec 2021

References

  1. 1. Siddiquee AN, Pandey S, Khan NZ: Friction Stir Welding of austenitic stainless steel: a study on microstructure and effect of parameters on tensile strength. Materials Today: Proceedings, 2, 2015, 1388-1397.10.1016/j.matpr.2015.07.058
  2. 2. Mohan DG, Gopi S, Rajasekar V: Effect of induction assisted friction stir welding on corrosive behaviour, mechanical properties and microstructure of AISI 410 stainless steel. Indian Journal of Engineering and Materials Sciences, 25, 2018, 203-208.
  3. 3. Astarita A, Curioni M, Squillace A, Zhou X, Bellucci F, Thompson GE, Beamish KA: Corrosion behaviour of stainless steel–titanium alloy linear friction welded joints: Galvanic coupling. Materials and Corrosion, 66(2), 2018, 111-117.10.1002/maco.201307476
  4. 4. Atapour M, Sarlak H, Esmailzadeh M: Pitting corrosion susceptibility of friction stir welded lean duplex stainless steel joints. International Journal of Advanced Manufacturing Technologies, 83, 2015, 721-728.10.1007/s00170-015-7601-5
  5. 5. Skowrońska B, Chmielewski T, Kulczyk M, Skiba J, Przybysz S: Microstuctural investigation of a friction-welded 316L stainless steel with ultrafine-grained structure obtained by hydrostatic extrusion. Materials, 14(6), 2021, 1537.10.3390/ma14061537800399233801045
  6. 6. Chen J, Shi L, Wu CS, Jiang Y: The effect of tool pin size and taper angle on the thermal process and plastic material flow in friction stir welding. International Journal of Advanced Manufacturing Technology, 116, 2021, 2847–2860.10.1007/s00170-021-07650-x
  7. 7. Mohan DG, Gopi S, Sasikumar A: Examining the mechanical and metallurgical properties of single pass friction stir welded dissimilar aluminium alloys tee joints. SVOA Materials Science & Technology, 3(1), 2021, 6–12.
  8. 8. Chagas de Souza G, da Silva AL, Tavares SSM, Pardal JM, Ferreira MLR, Filho IC: Mechanical properties and corrosion resistance evaluation of super duplex stainless steel UNS S32760 repaired by GTAW process. Welding International, 30, 2016, 432–442.10.1080/09507116.2015.1096527
  9. 9. Mohan DG, Gopi S: Study on the mechanical behaviour of friction stir welded aluminium alloys 6061 with 5052. The 8th Industrial Automation and Electromechanical Engineering Conference, Institute of Engineering and Management, Bangkok, Thailand, 2017.10.1109/IEMECON.2017.8079579
  10. 10. Mohan DG, Wu CS: A Review on Friction Stir Welding of Steels. Chinese Journal of Mechanical Engineering, Springer, 2021 (In press)10.1186/s10033-021-00655-3
  11. 11. Guo R, Shen Y, Huang G, Zhang W, Guan W: Microstructures and mechanical properties of thin 304 stainless steel sheets by friction stir welding. Journal of Adhesion Science and Technology, 32(12), 2018, 1313-1323.10.1080/01694243.2017.1409064
  12. 12. Subramanian K, Murugesan S, Mohan DG, Tomków J. Study on Dry Sliding Wear and Friction Behaviour of Al7068/Si3N4/BN Hybrid Composites. Materials, 14, 2021, 6560.10.3390/ma14216560
  13. 13. Kubit A, Drabczyk M, Trzepieciński T, Bochnowski W, Kaščák Ľ, Slota J: Fatigue life assessment of refill friction stir spot welded alclad 7075-T6 aluminium alloy joints. Metals, 10, 2020, 633.10.3390/met10050633
  14. 14. Song G, Li T, Yu J, Liu L: A review of bonding immiscible Mg/steel dissimilar metals. Materials, 11, 2018, 2515.10.3390/ma11122515
  15. 15. Liu FC, Hovanski Y, Miles MP, Sorensen CD, Nelson TW: A review of friction stir welding of steels: Tool, material flow, microstructure, and properties. Journal of Materials Science & Technology, 34(1), 2018, 39-57.10.1016/j.jmst.2017.10.024
  16. 16. Mohan DG, Gopi S, Rajasekar V: Mechanical and corrosion resistant properties of hybrid-welded stainless steel. Materials Performance, 57(1), 2018, 53–56.
  17. 17. Tamadon A, Pons DJ, Sued K, Clucs D: Internal flow behaviour and microstructural evolution of the bobbin-FSW welds: Thermomechanical comparison between 1XXX and 3XXX aluminium grades. Advances in Materials Science, 21(2), 2021, 40-64.10.2478/adms-2021-0010
  18. 18. Cui L, Zhang C, Yong-chang L, Liu XG, Wang DP, Li HJ: Recent progress in friction stir welding tools used for steels. Journal of Iron and Steel Research International, 25, 2018, 477-486.10.1007/s42243-018-0066-7
  19. 19. Gao S, Zhao H, Zhang R, Ma C, Zhou L, Chen G, Li D, Yang H, Song X, Zhao Y: Microstructure evolution of friction stir processed 2507 duplex stainless steel. Welding in the World, 2021.10.1007/s40194-021-01175-3
  20. 20. Han Y, Jiang X, Chen S, Yuan T, Zhang H, Bai Y, Xiang Y, Li X: Microstructure and mechanical properties of electrically assisted friction stir welded AZ3 1B alloy joints. Journal of Manufacturing Processes, 43, 2019, 26-34.10.1016/j.jmapro.2019.05.011
  21. 21. Gopi S, Manonmani, K: Predicting tensile strength of double side friction stir welded 6082-T6 aluminium alloy. Science and Technology of Welding and Joining, 17(7), 2012, 601-607.10.1179/1362171812Y.0000000055
  22. 22. Hua P, Moronov S, Nie CZ, Sato YS, Kokawa H, Park SHC, Hirano S: Microstructure and properties in friction stir weld of 12Cr steel. Science and Technology of Welding and Joining, vol. 19, 2014, 176-181.10.1179/1362171813Y.0000000167
  23. 23. Mohan DG, Gopi S: Influence of In-situ induction assisted friction stir welding on tensile, microhardness, corrosion resistance and microstructural properties of martensitic steel. Engineering Research Express, 3, 2021, 025023.10.1088/2631-8695/abfe1d
  24. 24. Cui L, Fujii H, Tsuji N, Nogi K: Friction stir welding of a high carbon steel. Scripta Materialia, 56, 2017, 637-640.10.1016/j.scriptamat.2006.12.004
  25. 25. Magnani M, Terada M, Lino AO, Tallo VP, da Fonseca EB, Santos TFA, Ramirez AJ: Microstructural and electrochemical characterization of friction stir welded duplex stainless steels. International Journal of Electrochemical Science, 9, 2014, 2966-2977.10.1016/S1452-3981(23)07983-X
  26. 26. Mohan DG, Gopi S: Induction assisted friction stir welding: a review. Australian Journal of Mechanical Engineering, 1, 2018, 119-123.10.1080/14484846.2018.1432089
  27. 27. Mironov S, Sato YS, Yoneyama S, Kokawa H, Fujii HT, Hirano S: Microstructure and tensile behavior of friction-stir welded TRIP steel. Materials Science and Engineering A, 717, 2018, 72-82.10.1016/j.msea.2018.01.053
  28. 28. Wang L, Chen J, Wu CS: Auxiliary energy-assisted arc welding processes and their modelling, sensing and control. Science and Technology of Welding and Joining, 26(5), 2021, 389-411.10.1080/13621718.2021.1926659
  29. 29. Thimmaraju PK, Arakanti K, Chandra Mohan Reddy G: Influence of tool geometry on material flow pattern in friction stir welding process. International Journal of Theoretical and Applied Mechanics, 12, 2017, 445-458.
  30. 30. Memon S, Paidar M, Sadreddini S, Cooke K, Babaei B, Ojo OO: Mechanical and microstructural aspects of the hybrid joint of PP-C30S and 2219 aluminum alloy. Results in Physics, 19, 2020, 103629.10.1016/j.rinp.2020.103629
  31. 31. Sasikumar A, Gopi S, Mohan, DG: Effect of magnesium and chromium fillers on the microstructure and tensile strength of friction stir welded dissimilar aluminium alloys. Materials Research Express, 6(8), 2019, 086580.10.1088/2053-1591/ab1cd6
  32. 32. Shrikrishna KA, Sathiya P: Effects of post weld heat treatment on friction welded duplex stainless steel joints. Journal of Manufacturing Processes, 21, 2015, 196–200.10.1016/j.jmapro.2015.10.005
  33. 33. Li X, Li C, Liang Z, Xusheng Q, Wang D: Research on the corrosion behavior of double-side friction stir welded 6082Al alloy thick plate. Journal of Adhesion Science and Technology, 35(9), 2020, 993-1005.10.1080/01694243.2020.1829874
  34. 34. Su H, Wang T, Wu CS. Formation of the periodic material flow behaviour in friction stir welding, Science and Technology of Welding and Joining, 26(4), 2021, 286-293.10.1080/13621718.2021.1902605
  35. 35. Yang C, Wu C, Gao S. Modified constitutive equation by using phase field simulation of dynamic recrystallization in friction stir welding. Journal of Materials Research and Technology, 12, 2021, 916–929.10.1016/j.jmrt.2021.03.031
  36. 36. Paidar M, Memon S, Samusenkov VO, Babaei B, Ojo OO: Friction spot extrusion welding-brazing of copper to aluminum alloy. Materials Letters, 285, 2021, 129160.10.1016/j.matlet.2020.129160
  37. 37. Walczak M, Szala M: Effect of shoot peening on the surface properties, corrosion and wear performance of 17-4PH steel produced by DMLS additive manufacturing. Archives of Civil and Mechanical Engineering, 21, 2021, 157.10.1007/s43452-021-00306-3
  38. 38. Guo C, Shen Y, Hou W, Yan Y, Huang G, Liu W: Effect of groove depth and plunge depth on microstructure and mechanical properties of friction stir butt welded AA6061-T6. Journal of Adhesion Science and Technology, 32(24), 2018, 2709-726.10.1080/01694243.2018.1505347
  39. 39. Sun Z, Wu C S. Influence of tool thread pitch on material flow and thermal process in friction stir welding. Journal of Materials Processing Technology, 275, 2020,116281.10.1016/j.jmatprotec.2019.116281
  40. 40. Mohan DG, Tomków J, Gopi S: Induction assisted hybrid Friction Stir Welding of dissimilar materials AA5052 aluminium alloy and X12Cr13 stainless steel. Advances in Materials Science, 21(3), 2021, 17-30.10.2478/adms-2021-0015
  41. 41. Memon S, Paidar M, Mehrez S, Cooke K, Ojo OO, Lankarani HM: Effects of materials positioning and tool rotational speed on metallurgical and mechanical properties of dissimilar modified friction stir clinching of AA5754-O and AA2024-T3 sheets. Results in Physics, 22, 2021, 103962.10.1016/j.rinp.2021.103962
  42. 42. AnandhaKumar CJ, Gopi S, Mohan DG, Shashi Kumar S: Predicting the ultimate tensile strength and wear rate of aluminium hybrid surface composites fabricated via friction stir processing using computational Mmethods. Journal of Adhesion Science and Technology, 2021.
  43. 43. Balamurugan M, Gopi S, Mohan DG: Influence of tool pin profiles on the filler added friction stir spot welded dissimilar aluminium alloy joints. Materials Research Express, 8, 2021, 096531.10.1088/2053-1591/ac2771
  44. 44. Memon S, Fydrych D, Fernandes AC, Derazkola HaA, Derazkola HeA: Effect of FSW tool plunge depth on properties of an Al-Mg-Si alloy T-joint: thermomechanical modelling and experimental evolution. Materials, 14, 2021, 4754.10.3390/ma14164754
  45. 45. Gopi S, Mohan DG: Evaluating the welding pulses of various tool profiles in single-pass friction stir welding of 6082-T6 aluminium alloy. Journal of Welding and Joining, The Korean Welding and Joining Society, 39(3), 2021, 284-294.10.5781/JWJ.2021.39.3.7
  46. 46. Memon S, Paidar M, Ojo OO, Cooke K, Babaei B, Masoumnezhad M: The role of stirring time on the metallurgical and mechanical properties during modified friction stir clinching of AA6061-T6 and AA7075-T6 sheets. Results in Physics, 19, 2020, 103364.10.1016/j.rinp.2020.103364
  47. 47. Sasikumar A, Gopi S, Mohan DG: Effect of welding speed on microhardness and corrosion resistance properties of filler induced friction stir welded AA6082 and AA5052 joints. Materials Research Express, 8, 2021, 066531.10.1088/2053-1591/ac0c9e
  48. 48. Geng X, Feng H, Jiang Z, Li H, Zhang B, Zhang S, Wang Q, Li J: Microstructure, mechanical and corrosion properties of friction stir welding high nitrogen martensitic stainless steel 30Cr15Mo1N. Metals, 6(12), 2016, 301.10.3390/met6120301
  49. 49. Mohan DG, Gopi S: Influence of in-situ induction heated friction stir welding on tensile, microhardness, corrosion resistance and microstructural properties of martensitic steel. Engineering Research Express, 3, 2021, 025023.10.1088/2631-8695/abfe1d
  50. 50. Memon S, Paidar M, Mehta KP, Babaei B, Lankarani HM: Friction spot extrusion welding on dissimilar materials AA2024-T3 to AA5754-O: effect of shoulder plunge depth. Journal of Materials Engineering and Performance, 30, 2021, 334-345.10.1007/s11665-020-05387-4
  51. 51. Mohan DG, Gopi S: Optimized parameters prediction for single-pass friction stir welding on dissimilar aluminium alloys T-joint. International Journal on Emerging Technologies, 12(2), 2021, 15-20.
  52. 52. Yu X, Mazumder B, Miller MK, David S, Feng Z: Stability of Y–Ti–O precipitates in friction stir welded nanostructured ferritic alloys. Science and Technology of Welding and Joining, 20, 2015, 236-241.10.1179/1362171815Y.0000000002
  53. 53. Ghiasvand A, Yavari MM, Tomków J, Grimaldo Guerrero JW, Kheradmandan H, Dorofeev A, Memon S, Derazkola HA: Investigation of mechanical and microstructural properties of welded specimens of AA6061-T6 alloy with friction stir welding and parallel-friction stir welding methods. Materials, 14, 2021, 6003.10.3390/ma14206003
  54. 54. Kosturek R, Śnieżek L, Torzewski J, Ślęzak T, Wachowski M, Szachogłuchowicz I: Research on the properties and low cycle fatigue of Sc-modified AA2519-T62 FSW joint. Materials, 13, 2020, 5226.10.3390/ma13225226
  55. 55. Sameer MD, Birru AK: Selection of friction stir welding tool rotational speed for joining dual phase DP600 steel sheets – an experimental approach. Journal of Adhesion Science and Technology, 35, 2020, 751-776.10.1080/01694243.2020.1826789
  56. 56. Liu XC, Sun YF, Nagira T, Ushioda K, Fujii H: Microstructure evolution of Cu–30Zn during friction stir welding. Journal of Materials Science, 53, 2018, 10423-10441.10.1007/s10853-018-2313-5
  57. 57. Paidar M, Mehrez S, Babaei B, Memon S, Ojo OO, Lankarani HM. Dissimilar welding of AA5083 to AZ31 Mg alloys using modified friction stir clinching brazing. Materials Letters, 301, 2021, 129764.10.1016/j.matlet.2021.129764
DOI: https://doi.org/10.2478/adms-2021-0025 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 67 - 78
Published on: Dec 30, 2021
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Dhanesh G. Mohan, S. Gopi, Jacek Tomków, Shabbir Memon, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.