Have a personal or library account? Click to login
Evaluation of the Effects of Transparent PV Glazing Application on Energy Use and Thermal Comfort in an Office room Through Annual Energy Simulations Cover

Evaluation of the Effects of Transparent PV Glazing Application on Energy Use and Thermal Comfort in an Office room Through Annual Energy Simulations

Open Access
|Dec 2025

References

  1. Transforming our world: the 2030 Agenda for Sustainable Development. United Nations, 2015, https://sdgs.un.org/2030agenda (access: 4.03.2025)
  2. U.S. Energy Information Administration, International Energy Outlook 2023, U.S. Department of Energy, Washington, DC, 2023, 1–133. https://www.eia.gov/outlooks/ieo/pdf/IEO2023_narra tive.pdf (access: 14.07.2025).
  3. IPCC, Climate Change 2022. Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 2022. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://www.ipcc. ch/report/ar6/wg3/(access: 16.07.2025).
  4. Reduction of CO emissions – houses and apartments according to DecarbEurope. Leonardo Energy (in Polish). https://leonardo-energy.pl/artykuly/zmniej szenie-emisji-co2-domy-imieszkania-wg-decarbeurope/(access: 16.07.2025).
  5. Cuce E., Cuce P.M., (2019). Optimised performance of a thermally resistive PV glazing technology: An experimental validation, Energy Reports, 5, 1185–1195. https://doi.org/10.1016/j.egyr.2019.08.046
  6. Kyrou E., Goia F., Reith A., (2023). Current performance and future development paths of transparent PV glazing in a multi-domain perspective, Energy and Buildings, 292, 113140. https://doi.org/10.1016/j.enbuild.2023.113140
  7. Martín-Chivelet N., Kapsis K., Wilson H.R., Delisle V., Yang R., Olivieri L., Polo J., Eisenlohr J., Roy B., Maturi L., Otnes G., Dallapiccola M., Wijeratne W. M.P.U., (2022). Building-Integrated Photovoltaic (BIPV) products and systems: A review of energy related behavior, Energy and Buildings, 262, 111998. https://doi.org/10.1016/j.enbuild.2022.111998
  8. Mesloub A., Albaqawy G.A., Kandar M.Z., (2020). The Optimum Performance of Building Integrated Photovoltaic (BIPV) Windows Under a Semi-Arid Climate in Algerian Office Buildings, Sustainability, 12(4), 1654. https://doi.org/10.3390/su12041654
  9. Goia F., (2016). Search for the optimal window-to-wall ratio in office buildings in different European climates and the implications on total energy saving potential, Solar Energy, 132, 467–492. https://doi.org/10.1016/j.solener.2016.03.031
  10. Kisilewicz T., (2008). The influence of insulating, dynamic and spectral properties of partitions on the heat balance of energy-efficient buildings (in Polish)., Monografia 364, Seria Inżynieria Lądowa, Politechnika Krakowska, Kraków.
  11. Kuhn T.E., Erban C., Heinrich M., Eisenlohr J., Ensslen F., Neuhaus D.H., (2021). Review of technological design options for building integrated photo voltaics (BIPV), Energy and Buildings, 231, 110381. https://doi.org/10.1016/j.enbuild.2020.110381
  12. DesignBuilder Help v 7.3, DesignBuilder Software Ltd., https://designbuilder.co.uk/helpv7.3/(access: 18.06.2025).
  13. Ministry of Development, Labour and Technology, Regulation on technical conditions to be met by buildings and their location, 2021 (in Polish). https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id= WDU20210002351 (access: 27.07.2025).
  14. EN 16798-1:2019 – Energy performance of buildings – Ventilation for buildings – Part 1: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics – Module M1-6, CEN, Brussels, 2019.
  15. ISO 7730:2005 – Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of PMV and PPD indices and local thermal comfort criteria, 3rd edition, ISO, Geneva, 2005.
  16. EN 12464-1:2021 – Light and lighting – Lighting of work places – Part 1: Indoor work places, CEN, Brussels, 2021.
  17. European Parliament & Council, Directive (EU) 2024/1275 on the energy performance of buildings, OJ L 202, 29.04.2024, p. 1–74. https://eurlex.europa.eu/legal-content/PL/TXT/?uri=CELEX:32024L1275 (access: 27.07.2025).
  18. Megrame, Glazing units – technical specifications https://www.megrame.lt/en/glazing-units (access: 16.07.2025).
  19. Aguilar-Santana J.L., Jarimi H., Velasco-Carrasco M., Riffat S., (2020). Review on window-glazing technologies and future prospects, International Journal of Low-Carbon Technologies, 15(1), 112–120. https://doi.org/10.1093/ij lct/ctz032
  20. Li X., Wu Y., (2024). A review of complex windowglazing systems for building energy saving and daylight comfort: Glazing technologies and their building performance prediction, Journal of Building Physics, 48(4). https://doi.org/10.1177/17442591241269182
  21. Nowak Ł., Waliduda M., (2025). Photovoltaic glass as a building envelope component. Part I. Technical aspects (in Polish), Przegląd Budowlany, 96(3), 137–139. https://doi.org/10.5604/01.3001.0055.1442
  22. Alrashidi H., Issa W., Sellami N., Sundaram S., Mallick T., (2022). Thermal performance evaluation and energy saving potential of semi-transparent CdTe in Façade BIPV, Solar Energy, 232, 84–91. https://doi.org/10.1016/j.solener.2021.12.037
  23. Khalifeeh R., Alrashidi H., Sellami N., Mallick T. Issa W., (2021). State-of-the-Art Review on the Energy Performance of Semi-Transparent Building Integrated Photovoltaic across a Range of Different Climatic and Environmental Conditions, Energies, 14(12), 3412. https://doi.org/10.3390/en14123412
  24. Peng J., Curcija D.C., Thanachareonkit A., Lee E.S., Goudey H., Jonsson J., Selkowitz S.E., (2021). Comparative study on the overall energy performance between photovoltaic and Low-E insulated glass units, Solar Energy, 214, 443–456. https://doi.org/10.1016/j.solener.2020.12.006
  25. Uddin M.M., Jie J., Wang C., Zhang C., Ke W., (2023). A review on photovoltaic combined vacuum glazing: Recent advancement and prospects, Energy and Buildings, 286, 112939. https://doi.org/10.1016/j.enbuild.2023.112939
  26. Ghosh A., Sundaram S., Mallick T.K., (2018). Investigation of thermal and electrical performances of a combined semi-transparent PV-vacuum glazing, Applied Energy, 228, 1591–1600. https://doi.org/10.1016/j.apenergy.2018.07.040
  27. Huang J., Chen X., Yang H., Zhang W., (2018). Numerical investigation of a novel vacuum photovoltaic curtain wall and integrated optimization of photovoltaic envelope systems, Applied Energy, 229, 1048–1060. https://doi.org/10.1016/j.apenergy.2018.08.095
  28. European Commission, Joint Research Centre, Photovoltaic Geographical Information System (PVGIS) – Data sources and calculation methods, Publications Office of the European Union, 2023. https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis/getting-started-pvgis/pvgis-data-sources-calculation-methods_en (access: 16.07.2025).
  29. Kim H., Kim J., Kim J.T. (2024). Analysis of Building Energy Performance with Application of Semi-Transparent BIPV Window Systems. Journal of The Korean Solar Energy Society, 44(4), 39–54. https://doi.org/10.7836/kses.2024.44.4.039
DOI: https://doi.org/10.2478/acee-2025-0050 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 95 - 104
Submitted on: Nov 14, 2025
|
Accepted on: Dec 13, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Michał WALIDUDA, Łukasz NOWAK, Krzysztof SCHABOWICZ, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.