Have a personal or library account? Click to login
Assessment of Heavy Metal Accumulation in Local Vegetation Due to Road Traffic Cover

Assessment of Heavy Metal Accumulation in Local Vegetation Due to Road Traffic

By: Max LEWANDOWSKI  
Open Access
|Dec 2025

References

  1. Świetlik, R., Trojanowska M. (2015). Struktura emisji metali ciężkich z ruchu samochodowego. TTS Technika Transportu Szynowego, 22(12), 1519-1521.
  2. Hong, N., Guan, Y., Yang, B., Zhong, J., Zhu, P., et al. (2020). Quantitative source tracking of heavy metals contained in urban road deposited sediments. Journal of Hazardous Materials, 393, 122362.
  3. Lewandowski, M., Landrat, M., & Kowalczyk, A. (2025). The Impact of Continuous Heavy Metal Emissions from Road Traffic on the Effectiveness of the Phytoremediation Process of Contaminated Soils. Applied Sciences, 15(17), 9748.
  4. Wang, M., & Zhang, H. (2018). Accumulation of Heavy Metals in Roadside Soil in Urban Area and the Related Impacting Factors. International Journal of Environmental Research and Public Health, 15.
  5. Stojić, N., Štrbac, S., Ćurčić, L., Pucarević, M., Prokić, D., Stepanov, J., & Stojić, G. (2023). Exploring the impact of transportation on heavy metal pollution: A comparative study of trains and cars. Transportation Research Part D: Transport and Environment, 125, 103966.
  6. Zehetner, F., Rosenfellner, U., Mentler, A., & Gerzabek, M. (2009). Distribution of Road Salt Residues, Heavy Metals and Polycyclic Aromatic Hydrocarbons across a Highway-Forest Interface. Water, Air, and Soil Pollution, 198, 125-132.
  7. Gao, Q., Zhu, S., Zhou, K., Zhai, J., Chen, S., et al. (2023). High enrichment of heavy metals in fine particulate matter through dust aerosol generation. Atmospheric Chemistry and Physics, 23(20), 13049–13060.
  8. Trophic transfer and biomagnification potential of environmental contaminants (heavy metals) in aquatic ecosystems. Environmental Pollution, 340, 122815.
  9. Lewandowski, M., Landrat, M. (2025). The use of hemp in the remediation of contaminated soils – a literature review. In Pikoń, K., Lewandowski, M. (Eds.), Contemporary problems of power engineering and environmental protection 2024.
  10. Uchimiya, M., Bannon, D., Nakanishi, H., McBride, M., Williams, M., & Yoshihara, T. (2020). Chemical Speciation, Plant Uptake, and Toxicity of Heavy Metals in Agricultural Soils. Journal of agricultural and food chemistry.
  11. Alengebawy, A., Abdelkhalek, S. T. Qureshi, S. R., & Wang, M.-Q. (2021). Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics, 9(3), 42.
  12. Edo, G. I., Samuel, P. O., Oloni, G. O., Ezekiel, G. O., Ikpekoro, V. O., et al. (2024). Environmental persistence, bioaccumulation, and ecotoxicology of heavy metals. Chemistry and Ecology, 40(3), 322–349.
  13. Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., & Han, W. (2019). A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques. Soil and Sediment Contamination: An International Journal, 28, 380–394.
  14. Fijalkowski, K., Kacprzak, M. (2020) Fitoremediacja. Potencjal roślin do oczyszczania środowiska. Warszawa: PWN.
  15. Liu, Z., Du, Q., Guan, Q., Luo, H., Shan, Y., & Shao, W. (2023). A Monte Carlo simulation-based health risk assessment of heavy metals in soils of an oasis agricultural region in northwest China. Science of The Total Environment, 857, 159543.
  16. Cirovic, A., & Satarug, S. (2024). Toxicity Tolerance in the Carcinogenesis of Environmental Cadmium. International Journal of Molecular Sciences, 25(3), 1851.
  17. Monib, A. W., Niazi, P., Azizi, A., Sediqi, S., & Baseer, A. Q. (2024). Heavy Metal Contamination in Urban Soils: Health Impacts on Humans and Plants: A Review. European Journal of Theoretical and Applied Sciences, 2(1), 546–565.
  18. Riyazuddin, R., Nisha, N., Ejaz, B., Khan, M., Kumar, M., Ramteke, P., & Gupta, R. (2021). A Comprehensive Review on the Heavy Metal Toxicity and Sequestration in Plants. Biomolecules, 12.
  19. Kučová, K. (2022). Biomonitoring of Post-Mine Environment Using Ruderal Plants. GeoScience Engineering.
  20. Cakaj, A., Drzewiecka, K., Hanć, A., Lisiak Zielińska, M., Ciszewska, L., & Drapikowska, M. (2024). Plants as effective bioindicators for heavy metal pollution monitoring. Environmental Research, 256, 119222.
  21. Li, C., Du, D., Gan, Y., Ji, S., Wang, L., Chang, M., & Liu, J. (2022). Foliar dust as a reliable environmental monitor of heavy metal pollution in comparison to plant leaves and soil in urban areas. Chemosphere, 287, 132341.
  22. Kalendar, R., Levei, E., Cadar, O., & Senila, M. (2024). Editorial: Trends and challenges in plant biomonitoring, bioremediation and biomining. Frontiers in Plant Science, 15.
  23. Bahinskyi, L., Świslowski, P., Isinkaralar, O., Isinkaralar, K., & Rajfur, M. (2025). Low-Cost Monitoring of Airborne Heavy Metals Using Lichen Bioindicators: Insights from Opole, Southern Poland. Atmosphere, 16(5), 576.
  24. Pająk, M., Halecki, W., & Gąsiorek, M. (2017). Accumulative response of Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth) to heavy metals enhanced by Pb-Zn ore mining and processing plants: Explicitly spatial considerations of ordinary kriging based on a GIS approach. Chemosphere, 168, 851-859.
  25. Lewandowski, M. (2025). Dziewanna (Verbascum sp.) jako biowskaźnik zaadaptowany do wzrostu na glebach zanieczyszczonych metalami ciężkimi. In Brągoszewska, E., Lewandowski, M. (Eds.), Wspólczesne Problemy ochrony środowiska i Energetyki 2024.
  26. Raklami, A., Meddich, A., Oufdou, K., & Baslam, M. (2022). Plants – Microorganisms-Based Bioremediation for Heavy Metal Cleanup: Recent Developments, Phytoremediation Techniques, Regulation Mechanisms, and Molecular Responses. International Journal of Molecular Sciences, 23(9), 5031.
  27. Muthusaravanan, S., Sivarajasekar, N., Vivek, J. S., Paramasivan, T., Naushad, Mu., Prakashmaran, J., Gayathri, V., & Al-Duaij, O. K. (2018). Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environmental Chemistry Letters, 16(4), 1339–1359.
  28. Priya, A. K., Muruganandam, M., Ali, S. S., & Kornaros, M. (2023). Clean-Up of Heavy Metals from Contaminated Soil by Phytoremediation: A Multidisciplinary and Eco-Friendly Approach. Toxics, 11(5), 422.
  29. Ashraf, S., Ali, Q., Zahir, Z., Ashraf, S., & Asghar, H. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and environmental safety, 174, 714-727.
  30. Kafle, A., Timilsina, A., Gautam, A., Adhikari, K., Bhattarai, A., & Aryal, N. (2022). Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances, 8, 100203.
  31. Tang, K. H. D. (2023). Phytoremediation: Where do we go from here? Biocatalysis and Agricultural Biotechnology, 50, 102721.
  32. Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals – Concepts and applications. Chemosphere, 91(7), 869-881.
  33. Saxena, G., Purchase, D., Mulla, S. I., Saratale, G. D., & Bharagava, R. N. (2019). Phytoremediation of Heavy Metal-Contaminated Sites: Eco-environmental Concerns, Field Studies, Sustainability Issues, and Future Prospects. In Reviews of Environmental Contamination and Toxicology (pp. 71–131). Springer International Publishing.
  34. Mishra, B., & Chandra, M. (2022). Evaluation of phytoremediation potential of aromatic plants: A systematic review. Journal of Applied Research on Medicinal and Aromatic Plants, 31, 100405.
  35. Glišić, R., Simic, Z., Grbović, F., Rajičić, V., & Branković, S. (2021). Phytoaccumulation of metals in three plants species of the Asteraceae family sampled along a highway.
  36. Polish Committee for Standardization. (2012). PN-EN 16174:2012. Sludge, treated biowaste and soil – Preparation of aqua regia extracts. Warszawa: PKN.
  37. Jonczy, I., & Stawowiak, M. (2019). The history of mining and metallurgy of metal ores in upper Silesia preserved in metallurgical waste dumps. New Trends in Production Engineering, 2(1), 376–383.
  38. Kaur, H., Garg, N. (2021). Zinc toxicity in plants: a review. Planta, 253.
  39. Alejandro, S., Höller, S., Meier, B., & Peiter, E. (2020). Manganese in Plants: From Acquisition to Subcellular Allocation. Frontiers in Plant Science, 11.
  40. Rai, S., Singh, P. Mankotia, S., Swain, J., & Satbhai, S. (2021). Iron homeostasis in plants and its crosstalk with copper, zinc, and manganese., 1, 100008.
  41. Chen, H., Yang, X., Wang, P. Wang, Z., Li, M., & Zhao, F. (2018). Dietary cadmium intake from rice and vegetables and potential health risk: A case study in Xiangtan, southern China. The Science of the Total Environment, 639, 271–277.
DOI: https://doi.org/10.2478/acee-2025-0048 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 75 - 85
Submitted on: Jul 21, 2005
|
Accepted on: Oct 3, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Max LEWANDOWSKI, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.