Have a personal or library account? Click to login
Real-Time Update of Digital Terrain Model From Lidar Data Cover

Real-Time Update of Digital Terrain Model From Lidar Data

Open Access
|Sep 2025

References

  1. Rao AS, Radanovic M, Liu Y, Hu S, Fang Y, Khoshelham K, Palaniswami M, Ngo T. (2022). Realtime monitoring of construction sites: sensors, methods, and applications. <em>Autom. Constr</em>., 136, 104099. doi:<a href="https://doi.org/10.1016/j.autcon.2021.104099." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.autcon.2021.104099.</a>
  2. Clemen C, Schröder M, Kaiser T, Romanschek E. (2021). IFCTerrain – a free and open source tool to convert digital terrain models (DTM) to OpenBIM Industry Foundation Classes (IFC). ISPRS Annals, VIII-4/W2, 145–51. doi:<a href="https://doi.org/10.5194/isprs-annals-VIII-4-W2-2021-145-2021." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5194/isprs-annals-VIII-4-W2-2021-145-2021.</a>
  3. Marotta F, Teruggi S, Achille C, Vassena GPM, Fassi F. (2021). Integrated laser scanner techniques to produce high-resolution DTM of vegetated territory. <em>Remote Sens., 13</em>(13), 2504. doi:<a href="https://doi.org/10.3390/rs13132504." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/rs13132504.</a>
  4. Gbopa AO, Ayodele EG, Okolie CJ, Ajayi AO, Iheaturu CJ. (2021). Unmanned aerial vehicles for three-dimensional mapping and change detection analysis. <em>GaEE, 15</em>(1), 41–61. doi:<a href="https://doi.org/10.7494/geom.2021.15.1.41." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.7494/geom.2021.15.1.41.</a>
  5. Matrone F, Gallitto F, Lingua AM, Maschio PF. (2024). Exploitation of the number of return echoes for DTM extraction from point clouds acquired by LiDAR UAS DJI Zenmuse L1. ISPRS Archives, 48, 233–40. doi:<a href="https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-233-2024." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5194/isprs-archives-XLVIII-2-2024-233-2024.</a>
  6. Bao Z, Hossain S, Lang H, Lin X. (2023). A review of high-definition map creation methods for autonomous driving. E<em>ng. Appl. Artif. Intell</em>., 122, 106125. doi:<a href="https://doi.org/10.1016/j.engappai.2023.106125." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.engappai.2023.106125.</a>
  7. Elhashash M, Albanwan H, Qin R. (2022). A review of mobile mapping systems: from sensors to applications. <em>Sensors, 22</em>(11), 4262. doi:<a href="https://doi.org/10.3390/s22114262." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/s22114262.</a>
  8. Kaczmarek A, Rohm W, Klingbeil L, Tchórzewski J. (2022). Experimental two-dimensional extended Kalman filter sensor fusion for low-cost GNSS/IMU/odometers precise positioning system. <em>Meas</em>., 193, 110963. doi:<a href="https://doi.org/10.1016/j.measurement.2022.110963." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.measurement.2022.110963.</a>
  9. Pereira T, Gameiro T, Viegas C, Santos V, Ferreira N. (2023). Sensor integration in a forestry machine. <em>Sensors, 23</em>(24), 9853. doi:<a href="https://doi.org/10.3390/s23249853." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/s23249853.</a>
  10. Dahal P, Arrigoni S, Bijelic M, Braghin F. (2024). MLIO: multiple LiDARs and inertial odometry. In: Proceedings of the Advanced Vehicle Control Symposium, Cham (Switzerland), <em>Springer Nature Switzerland</em>, 833–42. doi:<a href="https://doi.org/10.1007/978-3-031-70392-8_118." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-031-70392-8_118.</a>
  11. Immonen M, Niskanen I, Hallman L, Keränen P, Hiltunen M, Kostamovaara J, Heikkilä R. (2021). Fusion of 4D point clouds from a 2D profilometer and a 3D LiDAR on an excavator. <em>IEEE Sens. J., 21</em>(15), 17200–6. doi:<a href="https://doi.org/10.1109/JSEN.2021.3078301." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/JSEN.2021.3078301.</a>
  12. Gagula AC, Bolanio KP, Bermoy MM, Salupado CA, Arayan MG. (2023). Integrating geospatial techniques and UAS technology to update LiDAR DTM for flood modeling in Las Nieves, Agusan del Norte, Philippines. ISPRS Archives, 48, 109–16. doi:<a href="https://doi.org/10.5194/isprs-archives-XLVIII-4-W6-2022-109-2023." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5194/isprs-archives-XLVIII-4-W6-2022-109-2023.</a>
  13. Ćwiąkała P, Gruszczyński W, Stoch T, Puniach E, Mrocheń D, Matwij W, Matwij K, Nędzka M, Sopata P, Wójcik A. (2020). UAV applications for determination of land deformations caused by underground mining. <em>Remote Sens., 12</em>(11), 1733. doi:<a href="https://doi.org/10.3390/rs12111733." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/rs12111733.</a>
  14. Skaloud J, Schaer P, Stebler Y, Tomé P. (2010). Realtime registration of airborne laser data with subdecimeter accuracy. ISPRS J. Photogramm. <em>Remote Sens., 65</em>(2), 208–17. doi:<a href="https://doi.org/10.1016/j.isprsjprs.2009.12.003." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.isprsjprs.2009.12.003.</a>
  15. Ernst D, Jüngerink J, Kindervater L, Moftizadeh R, Alkhatib H, Vogel S. (2021). Data fusion for georeferencing a laser scanner‐based multi‐sensor system in a city environment. In: Proceedings of the 24th International Conference on Information Fusion, Sun City (South Africa), <em>IEEE</em>, 1–8. doi:<a href="https://doi.org/10.23919/FUSION49465.2021.9627026." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.23919/FUSION49465.2021.9627026.</a>
  16. Koch P, Lacroix S. (2016). Managing environment models in multi‐robot teams. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon (Korea), <em>IEEE</em>, 5722–8. doi:<a href="https://doi.org/10.1109/IROS.2016.7759842." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/IROS.2016.7759842.</a>
  17. Wang L, Li S,DuM, Ji G, Li K, Liu D. (2025). Terrain preview detection system based on loosely coupled and tightly coupled fusion with LiDAR and IMU. <em>Meas</em>., 242, 115924. doi:<a href="https://doi.org/10.1016/j.measurement.2024.115924." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.measurement.2024.115924.</a>
  18. Fankhauser P, Bloesch M, Hutter M. (2018). Probabilistic terrain mapping for mobile robots with uncertain localization. <em>IEEE Robot. Autom. Lett., 3</em>(4), 3019–26. doi:<a href="https://doi.org/10.1109/LRA.2018.2849506." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/LRA.2018.2849506.</a>
  19. Maturana D, Chou PW, Uenoyama M, Scherer S. (2018). Real-time semantic mapping for autonomous off-road navigation. In: Field and Service Robotics: Results of the 11th International Conference, Cham (Switzerland), Springer International Publishing, 335–50. doi:<a href="https://doi.org/10.1007/978-3-319-67361-5_22." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-319-67361-5_22.</a>
  20. Li Y, Ding L, Zheng Z, Yang Q, Zhao X, Liu G. (2018). A multi-mode real-time terrain parameter estimation method for wheeled motion control of mobile robots. <em>Mech. Syst. Signal Process</em>., 104, 758–75. doi:<a href="https://doi.org/10.1016/j.ymssp.2017.11.038." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ymssp.2017.11.038.</a>
  21. Ding N, Zhou Y, Li D, Zeng K. (2024). Real-time deformation monitoring of large diameter shield tunnel based on multi-sensor data fusion technique. <em>Meas</em>., 225, 114061. doi:<a href="https://doi.org/10.1016/j.measurement.2023.114061." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.measurement.2023.114061.</a>
  22. Phillips TG, Guenther N, McAree PR. (2017). When the dust settles: the four behaviors of LiDAR in the presence of fine airborne particulates. <em>J. Field Robot., 34</em>(5), 985–1009. doi:<a href="https://doi.org/10.1002/rob.21701." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/rob.21701.</a>
  23. Robertson G. (2016). Mining’s imperative for enhanced accuracy of real-time spatial data and reporting. In: Proceedings of the 16th International Congress for Mine Surveying, Brisbane (Australia), [publisher unknown].
  24. Li X, Liu C, Li J, Baghdadi M, Liu Y. (2021). A multisensor environmental perception system for an automatic electric shovel platform. <em>Sensors, 21</em>(13), 4355. doi:<a href="https://doi.org/10.3390/s21134355." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/s21134355.</a>
  25. Hirayama M, Guivant J, Katupitiya J, Whitty M. (2019). Path planning for autonomous bulldozers. <em>Mechatronics</em>, 58, 20–38. doi:<a href="https://doi.org/10.1016/j.mechatronics‥01.001." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.mechatronics‥01.001.</a>
  26. Zhang L, Zhao J, Long P, Wang L, Qian L, Lu F, Song X, Manocha D. (2021). An autonomous excavator system for material loading tasks. <em>Sci. Robot., 6</em>(55), eabc3164. doi:<a href="https://doi.org/10.1126/scirobotics.abc3164." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1126/scirobotics.abc3164.</a>
  27. Chae MJ, Lee GW, Kim JY, Park JW, Cho MY. (2011). A 3D surface modeling system for intelligent excavation system. <em>Autom. Constr., 20</em>(7), 808–17. doi:<a href="https://doi.org/10.1016/j.autcon.2011.02.003." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.autcon.2011.02.003.</a>
  28. Guan T, He Z, Song R, Zhang L, Manocha D. (2023). TNES: terrain traversability mapping, navigation and excavation system for autonomous excavators on worksite. <em>Auton. Robots., 47</em>(6), 695–714. doi:<a href="https://doi.org/10.1007/s10514-023-10113-9." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10514-023-10113-9.</a>
  29. Leica Geosystems AG. (2022 May 16). 4 Create a surface model [video on the Internet]. YouTube [cited 2025 Sep 21]. Available from: https://www.youtube.com/watch?v=jiZy5DLMT6o.
  30. Trimble CE&amp;C Help. (2018 Nov 28). Trimble Earthworks tutorial – record a point [video on the Internet]. YouTube [cited 2025 Sep 21]. Available from: https://www.youtube.com/watch?v=q3tS63oO3ls.
  31. Unicontrol ApS. [date unknown]. Learn how to utilize 3D machine control: create surface from points [Internet]. Unicontrol ApS [cited 2024 Nov 18]. Available from: https://www.unicontrol.com/learn-machine-control.
  32. Makin AS. (2023). Makin’ 3D: user guide 2.20 [Internet]. Makin AS [cited 2025 Sep 21]. Available from: https://maskinsystem.com/wp-con-tent/uploads/makin_excavator3d_usermanual-3.pdf.
  33. Novatron Oy. (2021). Xsite Pro LandNova X: bruker-håndbok for gravemaskin version 1.14.3.80 [Internet]. Novatron Oy [cited 2025 Sep 21]. Available from: https://hella.no/wp-content/uploads/2021/12/Xsite_Pro_user_manual_LandNova_X_1_6_2021_N O_8.11.2021.pdf.
  34. AEC Software Technology. (2018 Oct 8). Asbuilt mapping with machine control [video on the Internet]. YouTube [cited 2025 Sep 21]. Available from: https://www.youtube.com/watch?v=UluWSMWvpG w.
  35. Trimble Construction Support. (2021 Jul 27). Trimble Earthworks – how to: track mapping in Earthworks 2.5 [video on the Internet]. YouTube [cited 2025 Sep 21]. Available from: https://www.youtube.com/watch?v=hoPJnnoSWdQ.
  36. Leica Geosystems AG. (2023 Jan 23). How to use surface logging in MC1 [video on the Internet]. YouTube [cited 2025 Sep 21]. Available from: https://www.youtube.com/watch?v=J63XPDNNods.
  37. Unicontrol ApS. (2024 May 23). Dredging operations in Norway: Hylland’s success story revealed [Internet]. LinkedIn [cited 2025 Sep 21]. Available from: https://www.linkedin.com/pulse/dredging-operations-norway -hyllands-success-story -revealed-zgbhf/.
  38. Topcon Positioning Systems. (2017). 3D-MC software: user’s manual [Internet]. Topcon Positioning Systems [cited 2025 Sep 21]. Available from: https://myconstructiontechnology.com/wp-content/uploads/2021/04/3dmc_um.pdf.
  39. Makin’ 3D Machine Control. (2022 Oct 20). Makin’ surfaces – productivity and efficiency at a glance [video on the Internet]. YouTube [cited 2025 Sep 21]. Available from: https://www.youtube.com/watch?v=bXwhVzUbOyw.
  40. Bhandari V, James J, Phillips T, McAree PR. (2024). Probabilistic height grid terrain mapping for mining shovels using LiDAR. <em>IFAC-PapersOnLine, 58</em>(22), 54–9. doi:<a href="https://doi.org/10.1016/j.ifacol.2024.09.290." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ifacol.2024.09.290.</a>
  41. D’Adamo T. (2023). Building and maintaining realtime terrain maps for autonomous bulldozer mining [dissertation]. Brisbane (Australia), The University of Queensland. doi:<a href="https://doi.org/10.14264/212c46e." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.14264/212c46e.</a>
  42. Okunsky MV, Nesterova NV. (2019). Velodyne LIDAR method for sensor data decoding. IOP Conf. <em>Ser. Mater. Sci. Eng., 516</em>(1), 012018.doi:<a href="https://doi.org/10.1088/1757-899X/516/1/012018." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1088/1757-899X/516/1/012018.</a>
  43. SciPy Community. [date unknown]. SciPy documentation: scipy.spatial.transform.Rotation [Internet]. SciPy [cited 2025 Feb 19]. Available from: https://docs.scipy.org/doc/scipy/reference/generated/s cipy.spatial.transform.Rotation.html.
  44. Velodyne Lidar Inc. (2019). Velodyne Lidar Puck VLP-16: datasheet 63-9229 Rev-K [Internet]. Velodyne Lidar Inc [cited 2025 Sep 21]. Available from: https://ouster.com/downloads/velodyne-downloads.
  45. Afzalaghaeinaeini A, Seo J, Lee D, Lee H. (2022). Design of dust-filtering algorithms for LiDAR sensors using intensity and range information in off-road vehicles. <em>Sensors, 22</em>(11), 4051. doi:<a href="https://doi.org/10.3390/s22114051." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/s22114051.</a>
  46. Zhao S, Lu TF, Koch B, Hurdsman A. (2015). 3D stockpile modelling and quality calculation for continuous stockpile management. <em>Int. J. Miner Process</em>., 140, 32–42. doi:<a href="https://doi.org/10.1016/j.minpro.2015.04.012." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.minpro.2015.04.012.</a>
DOI: https://doi.org/10.2478/acee-2025-0041 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 205 - 223
Submitted on: Mar 21, 2025
Accepted on: Sep 1, 2025
Published on: Sep 30, 2025
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Daniel JANOS, Łukasz ORTYL, Przemysław KURAS, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.