Have a personal or library account? Click to login
Finite-Element Analysis of Flexural Behaviour of Timber-Glass Composite I-Beams Cover

Finite-Element Analysis of Flexural Behaviour of Timber-Glass Composite I-Beams

Open Access
|Sep 2025

References

  1. Robbins C. (1986). Daylighting: design and analysis. Van Nostrand Reinhold Company.
  2. Kaplan R. (1993). The role of nature in the context of the workplace. In: <em>Landscape and Urban Planning</em>, 26, 193–201.
  3. Citherlet S., Di Guglielmo F., and Gay J. (2000). Window and advanced glazing systems life cycle assessment. In: <em>Energy and Buildings 32</em>(3), 225–234.
  4. Haldimann M., Luible A., and Overend M. (2008). Structural Use of Glass. IABSE.
  5. W. Stiell, J. Schmid, K. Lieb, H. Krause, F. Stengel, (1996). Geklebte Glaselemente in Holz-tragwerken. Abschlußbericht. Institut für Fenstertechnik, Rosenheim.
  6. J. Schmidt et al., (1998). Einsatz von geklebten Glaselementen bei Holztragwerken – ein Beitrag zur Innovation in der Holz-bauarchitektur (Objektversuche). Institut für Fenstertechnik, Rosenheim.
  7. J. Natterer et al., (2002). New joining techniques for modern architecture, in: Rosenheimer Fenstertage.
  8. J. Hamm, (1999). Tragverhalten von Holz und Holzwerkstoffen im statischen Verbund mit Glas, PhD thesis, École Polytechnique Fédérale de Lausanne.
  9. J. Hamm, (2001). Development of Timber-Glass Prefabricated Structural Elements, in: Innovative Wooden Structures and Bridges IABSE, Conference Report 85, Lahti, 41–46.
  10. K. Kreher, K., (2004). Tragverhalten und Bemessung von Holz-Glas-Verbundträgern unter Berücksichtigung der Eigenspannungen im Glas, PhD thesis, École Polytechnique Fédérale de Lausanne, Lausanne (in German).
  11. K. Kreher, K., (2006). Load Introduction with Timber Timber as Reinforcement for Glued Composites (Shear-Walls, I-Beams). Structural Safety and Calculation-Model, in: 9th World Conference on Timber Engineering, Conference Proceedings, Portland.
  12. P. Cruz, J. Pequeno, (2008). Timber-Glass Composite Beams: Mechanical Behaviour &amp; Architectural Solutions, in: Challenging Glass Conference 1, Conference Proceedings, Delft University of Technology, Delft.
  13. L. Blyberg, E. Serrano, (2011). Timber/Glass Adhesively Bonded I-beams, in: Glass Performance Days, Conference Proceedings, Tampere.
  14. L. Blyberg, M. Lang, K. Lundstedt, M. Schander, E. Serrano, M. Silfverhielm, C. Stalhandske, (2014). Glass, timber and adhesive joints - innovative load bearing building components, in: <em>Constr. Build. Mater</em>. 55, 470–478.
  15. M. Premrov, M. Zlatinek, A. Strukelj, (2014). Experimental analysis of load-bearing timber-glass I-beam, in: Constr. <em>Unique Build. Struct. 4</em>(19), 11-20.
  16. Luís Valarinho, João R. Correia, Fernando A. Branco, (2013). Experimental study on the flexural behaviour of multi-span transparent glass–GFRP composite beams, Construction and Building Materials, 49, 1041–1053, ISSN 0950-0618. http://dx.doi.org/<a href="https://doi.org/10.1016/j.conbuildmat.2012.11.024." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.conbuildmat.2012.11.024.</a>
  17. J.H. Nielsen, J.F. Olesen, (2007). Mechanically Reinforced Glass Beams, In: Recent Developments in Structural Engineering, Mechanics and Computation, Conference Proceedings, Cape Town, 655–657.
  18. A.B. Olgaard, J.H. Nielsen, J.F Olesen, (2009). Design of Mechanically Reinforced Glass Beams - Modelling and Experiments, in: <em>Structural Engineering International 19</em>(2), 130–136.
  19. C. Louter, A. Van de Graaf, J. Rots, (2010). Modeling the Structural Response of Reinforced Glass Beams using an SLA Scheme, in: Challenging Glass 2, Conference on Architectural and Structural Applications of Glass, Conference Proceedings.
  20. J.R. Correia, L. Valarinho, F.A. Branco, (2011). Ductility and post-cracking strength of glass beams strengthened with GFRP pultruded composites, in: <em>Composite Structures 93</em>(9), 2299–2309.
  21. ABAQUS Computer software and online documentation, Simulia Systems.
  22. C. Bedon, C. Louter, (2014). Parametric 2D numerical investigations of the structural response of SG-laminated reinforced glass beams, in: Challenging Glass 4 &amp; COST Action TU0905 Final Conference, Conference Proceedings.
  23. C. Bedon, P.C. Louter, (2014). Exploratory numerical analysis of SG-laminated reinforced glass beam experiments, <em>Eng. Struct</em>. 75, 457–468.
  24. K. Martens, R. Caspeele, J. Belis, (2016). Numerical investigation of two-sided reinforced laminated glass beams in statically indeterminate systems, Glass Structures &amp; Engineering, 1–15.
  25. Luís Valarinho, José Sena-Cruz, João R. Correia, Fernando A. Branco, (2017). Numerical simulation of the flexural behaviour of composite glass-GFRP beams using smeared crack models, Composites Part B: <em>Engineering</em>, 110, 336–350. ISSN 1359-8368, http://dx.doi.org/<a href="https://doi.org/10.1016/j.compositesb.2016.10.035." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.compositesb.2016.10.035.</a>
  26. Kozłowski M., Dorn M., Serrano (2015). E.: Experimental testing of load-bearing timber-glass composite shear walls and beams. <em>Wood Material Science &amp; Engineering 10</em>(3), 276–286.
  27. Kozłowski M. (2014). Experimental and numerical analysis of hybrid timber-glass beams [Ph.D. thesis]. Silesian University of Technology, Gliwice, Poland.
  28. Kozłowski M., Serrano E., and Enquist B. (February 6-7, 2014). Experimental investigation on timberglass composite I-beams. Challenging Glass 4 and COST Action TU 0905 Final Conference, Lausanne.
  29. EN 572-2:2012 Glass in building - Basic soda lime silicate glass products - Part 2: Float glass.
  30. Hillerborg A., Modeer M., and Petersson P. (1976). “Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements”. In: <em>Cement and Concrete Research</em> 6, 773–782.
  31. Harewood F.J. and McHugh P.E. (2007). Comparison of the implicit and explicit finite element methods using crystal plasticity. In: <em>Computational Materials Science 39</em>(2), 481–494.
  32. Kutt L. et al. (1998). Slow-dynamic finite element simulation of manufacturing processes. In: <em>Computers &amp; Structures 66</em>(1), 1–17.
  33. Chung W.J., Cho J.W., and Belytschko T. (1998). On the dynamic effects of explicit FEM in sheet metal forming analysis. In: <em>Engineering Computations 15</em>(6), 750–776.
  34. Belytschko T., Black T., (1999). Elastic Crack Growth in Finite Elements with Minimal Remeshing, International Journal for Numerical Methods in <em>Engineering</em>, 45, 601–620.
  35. Melenk J., Babuska I., (1996). The Partition of Unity Finite Element Method: Basic Theory and Applications, <em>Computer Methods in Applied Mechanics and Engineering</em>, 39, 289–314.
  36. Lubliner, J., Oliver, J., Oller, S., Onate, E. (1989). A plastic-damage model for concrete. <em>Int. J. Solids Struct. 25</em>(3), 299–326.
  37. Lee, J., Fenves, G.L. (1998). Plastic-damage model for cyclic loading of concrete structures <em>J. Eng. Mech. 124</em>(8), 892–900.
  38. Wawrzynek, A., Cińcio, A., Fedorowicz, J. (2006). Numerical verification of the Barcelona model adapted for brick walls. Index and abstracts of papers given at the seventh international masonry conference, Proceedings, British Masonry Society, 10, 84.
  39. Mrozek, M., Mrozek, D. (2020). Analysis of location of composites reinforcement of masonry structures with use topological optimization. <em>Applications in Engineering Science</em> (3), 100015. <a href="https://doi.org/10.1016/j.apples.2020.100015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.apples.2020.100015</a>
  40. Bedon, C., Louter, C. (2016). Finite-element analysis of post-tensioned SG-laminated glass beams with mechanically anchored tendons. <em>Glass Struct. Eng</em>. (1), 39–59. DOI <a href="https://doi.org/10.1007/s40940-016-0020-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s40940-016-0020-7</a>
  41. Rocha, J., Pereira, E., Sena-Cruz, J. (2018). Alternative Approaches for the Numerical Simulation of Glass Structural Beams Reinforced with GFRP Laminates. <em>Challenging Glass</em> 6. <a href="https://doi.org/10.7480/cgc.6.2151" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.7480/cgc.6.2151</a>
  42. Kerto manual, mechanical properties september 2014, http://www.metsawood.com/global/tools/materialarch ive/materialarchive/kerto-manual-mechanical-properties.pdf
  43. EN 1995-1-1:2004 Eurocode 5: Design of timber structures - Part 1-1: General - Common rules and rules for buildings
  44. Möhler K. (1956). “Über das Verhalten von Biegeträgern und Druckstäben mit zusammengesetzten Querschnitten und nachgiebigen Verbindungsmitteln”. PhD thesis. Universität Karlsuhe.
  45. Flinterhoff A. (2002). “Tragverhalten von geklebten Stahl-Glas-Verbundkonstruktionen unter Biegebeanspruchung”. MA thesis. Dortmund University.
  46. Bernard F., Krour B., and Fahsi B. (2013). Analysis of the debonding risks and the failure of laminated glass thanks to a coupled analytical-numerical investigation”. In: COST Action TU0905 Mid-term Conference on Structural Glass. Conference Proceedings. 391–403.
DOI: https://doi.org/10.2478/acee-2025-0039 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 165 - 189
Submitted on: Apr 11, 2024
Accepted on: May 28, 2025
Published on: Sep 30, 2025
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Marcin KOZŁOWSKI, Erik SERRANO, Magdalena MROZEK, Dawid MROZEK, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.