References
- Robbins C. (1986). Daylighting: design and analysis. Van Nostrand Reinhold Company.
- Kaplan R. (1993). The role of nature in the context of the workplace. In: Landscape and Urban Planning, 26, 193–201.
- Citherlet S., Di Guglielmo F., and Gay J. (2000). Window and advanced glazing systems life cycle assessment. In: Energy and Buildings 32(3), 225–234.
- Haldimann M., Luible A., and Overend M. (2008). Structural Use of Glass. IABSE.
- W. Stiell, J. Schmid, K. Lieb, H. Krause, F. Stengel, (1996). Geklebte Glaselemente in Holz-tragwerken. Abschlußbericht. Institut für Fenstertechnik, Rosenheim.
- J. Schmidt et al., (1998). Einsatz von geklebten Glaselementen bei Holztragwerken – ein Beitrag zur Innovation in der Holz-bauarchitektur (Objektversuche). Institut für Fenstertechnik, Rosenheim.
- J. Natterer et al., (2002). New joining techniques for modern architecture, in: Rosenheimer Fenstertage.
- J. Hamm, (1999). Tragverhalten von Holz und Holzwerkstoffen im statischen Verbund mit Glas, PhD thesis, École Polytechnique Fédérale de Lausanne.
- J. Hamm, (2001). Development of Timber-Glass Prefabricated Structural Elements, in: Innovative Wooden Structures and Bridges IABSE, Conference Report 85, Lahti, 41–46.
- K. Kreher, K., (2004). Tragverhalten und Bemessung von Holz-Glas-Verbundträgern unter Berücksichtigung der Eigenspannungen im Glas, PhD thesis, École Polytechnique Fédérale de Lausanne, Lausanne (in German).
- K. Kreher, K., (2006). Load Introduction with Timber Timber as Reinforcement for Glued Composites (Shear-Walls, I-Beams). Structural Safety and Calculation-Model, in: 9th World Conference on Timber Engineering, Conference Proceedings, Portland.
- P. Cruz, J. Pequeno, (2008). Timber-Glass Composite Beams: Mechanical Behaviour & Architectural Solutions, in: Challenging Glass Conference 1, Conference Proceedings, Delft University of Technology, Delft.
- L. Blyberg, E. Serrano, (2011). Timber/Glass Adhesively Bonded I-beams, in: Glass Performance Days, Conference Proceedings, Tampere.
- L. Blyberg, M. Lang, K. Lundstedt, M. Schander, E. Serrano, M. Silfverhielm, C. Stalhandske, (2014). Glass, timber and adhesive joints - innovative load bearing building components, in: Constr. Build. Mater. 55, 470–478.
- M. Premrov, M. Zlatinek, A. Strukelj, (2014). Experimental analysis of load-bearing timber-glass I-beam, in: Constr. Unique Build. Struct. 4(19), 11-20.
- Luís Valarinho, João R. Correia, Fernando A. Branco, (2013). Experimental study on the flexural behaviour of multi-span transparent glass–GFRP composite beams, Construction and Building Materials, 49, 1041–1053, ISSN 0950-0618. http://dx.doi.org/10.1016/j.conbuildmat.2012.11.024.
- J.H. Nielsen, J.F. Olesen, (2007). Mechanically Reinforced Glass Beams, In: Recent Developments in Structural Engineering, Mechanics and Computation, Conference Proceedings, Cape Town, 655–657.
- A.B. Olgaard, J.H. Nielsen, J.F Olesen, (2009). Design of Mechanically Reinforced Glass Beams - Modelling and Experiments, in: Structural Engineering International 19(2), 130–136.
- C. Louter, A. Van de Graaf, J. Rots, (2010). Modeling the Structural Response of Reinforced Glass Beams using an SLA Scheme, in: Challenging Glass 2, Conference on Architectural and Structural Applications of Glass, Conference Proceedings.
- J.R. Correia, L. Valarinho, F.A. Branco, (2011). Ductility and post-cracking strength of glass beams strengthened with GFRP pultruded composites, in: Composite Structures 93(9), 2299–2309.
- ABAQUS Computer software and online documentation, Simulia Systems.
- C. Bedon, C. Louter, (2014). Parametric 2D numerical investigations of the structural response of SG-laminated reinforced glass beams, in: Challenging Glass 4 & COST Action TU0905 Final Conference, Conference Proceedings.
- C. Bedon, P.C. Louter, (2014). Exploratory numerical analysis of SG-laminated reinforced glass beam experiments, Eng. Struct. 75, 457–468.
- K. Martens, R. Caspeele, J. Belis, (2016). Numerical investigation of two-sided reinforced laminated glass beams in statically indeterminate systems, Glass Structures & Engineering, 1–15.
- Luís Valarinho, José Sena-Cruz, João R. Correia, Fernando A. Branco, (2017). Numerical simulation of the flexural behaviour of composite glass-GFRP beams using smeared crack models, Composites Part B: Engineering, 110, 336–350. ISSN 1359-8368, http://dx.doi.org/10.1016/j.compositesb.2016.10.035.
- Kozłowski M., Dorn M., Serrano (2015). E.: Experimental testing of load-bearing timber-glass composite shear walls and beams. Wood Material Science & Engineering 10(3), 276–286.
- Kozłowski M. (2014). Experimental and numerical analysis of hybrid timber-glass beams [Ph.D. thesis]. Silesian University of Technology, Gliwice, Poland.
- Kozłowski M., Serrano E., and Enquist B. (February 6-7, 2014). Experimental investigation on timberglass composite I-beams. Challenging Glass 4 and COST Action TU 0905 Final Conference, Lausanne.
- EN 572-2:2012 Glass in building - Basic soda lime silicate glass products - Part 2: Float glass.
- Hillerborg A., Modeer M., and Petersson P. (1976). “Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements”. In: Cement and Concrete Research 6, 773–782.
- Harewood F.J. and McHugh P.E. (2007). Comparison of the implicit and explicit finite element methods using crystal plasticity. In: Computational Materials Science 39(2), 481–494.
- Kutt L. et al. (1998). Slow-dynamic finite element simulation of manufacturing processes. In: Computers & Structures 66(1), 1–17.
- Chung W.J., Cho J.W., and Belytschko T. (1998). On the dynamic effects of explicit FEM in sheet metal forming analysis. In: Engineering Computations 15(6), 750–776.
- Belytschko T., Black T., (1999). Elastic Crack Growth in Finite Elements with Minimal Remeshing, International Journal for Numerical Methods in Engineering, 45, 601–620.
- Melenk J., Babuska I., (1996). The Partition of Unity Finite Element Method: Basic Theory and Applications, Computer Methods in Applied Mechanics and Engineering, 39, 289–314.
- Lubliner, J., Oliver, J., Oller, S., Onate, E. (1989). A plastic-damage model for concrete. Int. J. Solids Struct. 25(3), 299–326.
- Lee, J., Fenves, G.L. (1998). Plastic-damage model for cyclic loading of concrete structures J. Eng. Mech. 124(8), 892–900.
- Wawrzynek, A., Cińcio, A., Fedorowicz, J. (2006). Numerical verification of the Barcelona model adapted for brick walls. Index and abstracts of papers given at the seventh international masonry conference, Proceedings, British Masonry Society, 10, 84.
- Mrozek, M., Mrozek, D. (2020). Analysis of location of composites reinforcement of masonry structures with use topological optimization. Applications in Engineering Science (3), 100015. https://doi.org/10.1016/j.apples.2020.100015
- Bedon, C., Louter, C. (2016). Finite-element analysis of post-tensioned SG-laminated glass beams with mechanically anchored tendons. Glass Struct. Eng. (1), 39–59. DOI 10.1007/s40940-016-0020-7
- Rocha, J., Pereira, E., Sena-Cruz, J. (2018). Alternative Approaches for the Numerical Simulation of Glass Structural Beams Reinforced with GFRP Laminates. Challenging Glass 6. https://doi.org/10.7480/cgc.6.2151
- Kerto manual, mechanical properties september 2014, http://www.metsawood.com/global/tools/materialarch ive/materialarchive/kerto-manual-mechanical-properties.pdf
- EN 1995-1-1:2004 Eurocode 5: Design of timber structures - Part 1-1: General - Common rules and rules for buildings
- Möhler K. (1956). “Über das Verhalten von Biegeträgern und Druckstäben mit zusammengesetzten Querschnitten und nachgiebigen Verbindungsmitteln”. PhD thesis. Universität Karlsuhe.
- Flinterhoff A. (2002). “Tragverhalten von geklebten Stahl-Glas-Verbundkonstruktionen unter Biegebeanspruchung”. MA thesis. Dortmund University.
- Bernard F., Krour B., and Fahsi B. (2013). Analysis of the debonding risks and the failure of laminated glass thanks to a coupled analytical-numerical investigation”. In: COST Action TU0905 Mid-term Conference on Structural Glass. Conference Proceedings. 391–403.