Citherlet S., Di Guglielmo F., and Gay J. (2000). Window and advanced glazing systems life cycle assessment. In: <em>Energy and Buildings 32</em>(3), 225–234.
W. Stiell, J. Schmid, K. Lieb, H. Krause, F. Stengel, (1996). Geklebte Glaselemente in Holz-tragwerken. Abschlußbericht. Institut für Fenstertechnik, Rosenheim.
J. Schmidt et al., (1998). Einsatz von geklebten Glaselementen bei Holztragwerken – ein Beitrag zur Innovation in der Holz-bauarchitektur (Objektversuche). Institut für Fenstertechnik, Rosenheim.
K. Kreher, K., (2004). Tragverhalten und Bemessung von Holz-Glas-Verbundträgern unter Berücksichtigung der Eigenspannungen im Glas, PhD thesis, École Polytechnique Fédérale de Lausanne, Lausanne (in German).
K. Kreher, K., (2006). Load Introduction with Timber Timber as Reinforcement for Glued Composites (Shear-Walls, I-Beams). Structural Safety and Calculation-Model, in: 9th World Conference on Timber Engineering, Conference Proceedings, Portland.
P. Cruz, J. Pequeno, (2008). Timber-Glass Composite Beams: Mechanical Behaviour & Architectural Solutions, in: Challenging Glass Conference 1, Conference Proceedings, Delft University of Technology, Delft.
L. Blyberg, M. Lang, K. Lundstedt, M. Schander, E. Serrano, M. Silfverhielm, C. Stalhandske, (2014). Glass, timber and adhesive joints - innovative load bearing building components, in: <em>Constr. Build. Mater</em>. 55, 470–478.
M. Premrov, M. Zlatinek, A. Strukelj, (2014). Experimental analysis of load-bearing timber-glass I-beam, in: Constr. <em>Unique Build. Struct. 4</em>(19), 11-20.
Luís Valarinho, João R. Correia, Fernando A. Branco, (2013). Experimental study on the flexural behaviour of multi-span transparent glass–GFRP composite beams, Construction and Building Materials, 49, 1041–1053, ISSN 0950-0618. http://dx.doi.org/<a href="https://doi.org/10.1016/j.conbuildmat.2012.11.024." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.conbuildmat.2012.11.024.</a>
C. Louter, A. Van de Graaf, J. Rots, (2010). Modeling the Structural Response of Reinforced Glass Beams using an SLA Scheme, in: Challenging Glass 2, Conference on Architectural and Structural Applications of Glass, Conference Proceedings.
C. Bedon, C. Louter, (2014). Parametric 2D numerical investigations of the structural response of SG-laminated reinforced glass beams, in: Challenging Glass 4 & COST Action TU0905 Final Conference, Conference Proceedings.
K. Martens, R. Caspeele, J. Belis, (2016). Numerical investigation of two-sided reinforced laminated glass beams in statically indeterminate systems, Glass Structures & Engineering, 1–15.
Luís Valarinho, José Sena-Cruz, João R. Correia, Fernando A. Branco, (2017). Numerical simulation of the flexural behaviour of composite glass-GFRP beams using smeared crack models, Composites Part B: <em>Engineering</em>, 110, 336–350. ISSN 1359-8368, http://dx.doi.org/<a href="https://doi.org/10.1016/j.compositesb.2016.10.035." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.compositesb.2016.10.035.</a>
Kozłowski M., Dorn M., Serrano (2015). E.: Experimental testing of load-bearing timber-glass composite shear walls and beams. <em>Wood Material Science & Engineering 10</em>(3), 276–286.
Kozłowski M. (2014). Experimental and numerical analysis of hybrid timber-glass beams [Ph.D. thesis]. Silesian University of Technology, Gliwice, Poland.
Kozłowski M., Serrano E., and Enquist B. (February 6-7, 2014). Experimental investigation on timberglass composite I-beams. Challenging Glass 4 and COST Action TU 0905 Final Conference, Lausanne.
Hillerborg A., Modeer M., and Petersson P. (1976). “Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements”. In: <em>Cement and Concrete Research</em> 6, 773–782.
Harewood F.J. and McHugh P.E. (2007). Comparison of the implicit and explicit finite element methods using crystal plasticity. In: <em>Computational Materials Science 39</em>(2), 481–494.
Chung W.J., Cho J.W., and Belytschko T. (1998). On the dynamic effects of explicit FEM in sheet metal forming analysis. In: <em>Engineering Computations 15</em>(6), 750–776.
Belytschko T., Black T., (1999). Elastic Crack Growth in Finite Elements with Minimal Remeshing, International Journal for Numerical Methods in <em>Engineering</em>, 45, 601–620.
Melenk J., Babuska I., (1996). The Partition of Unity Finite Element Method: Basic Theory and Applications, <em>Computer Methods in Applied Mechanics and Engineering</em>, 39, 289–314.
Wawrzynek, A., Cińcio, A., Fedorowicz, J. (2006). Numerical verification of the Barcelona model adapted for brick walls. Index and abstracts of papers given at the seventh international masonry conference, Proceedings, British Masonry Society, 10, 84.
Mrozek, M., Mrozek, D. (2020). Analysis of location of composites reinforcement of masonry structures with use topological optimization. <em>Applications in Engineering Science</em> (3), 100015. <a href="https://doi.org/10.1016/j.apples.2020.100015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.apples.2020.100015</a>
Rocha, J., Pereira, E., Sena-Cruz, J. (2018). Alternative Approaches for the Numerical Simulation of Glass Structural Beams Reinforced with GFRP Laminates. <em>Challenging Glass</em> 6. <a href="https://doi.org/10.7480/cgc.6.2151" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.7480/cgc.6.2151</a>
Möhler K. (1956). “Über das Verhalten von Biegeträgern und Druckstäben mit zusammengesetzten Querschnitten und nachgiebigen Verbindungsmitteln”. PhD thesis. Universität Karlsuhe.
Bernard F., Krour B., and Fahsi B. (2013). Analysis of the debonding risks and the failure of laminated glass thanks to a coupled analytical-numerical investigation”. In: COST Action TU0905 Mid-term Conference on Structural Glass. Conference Proceedings. 391–403.