References
- Sobiesiak, M. (2017). Chemical Structure of Phenols and Its Consequence for Sorption Processes. InTech, 3–28. DOI: 10.5772/66537. In M. Soto-Hernández, M. Palma-Tenango, & R. García-Mateos (Eds.), Phenolic Compounds – Natural Sources, Importance and Applications. InTech. DOI: 10.5772/67213
- Vermerris, W., & Nicholson, R. (2009). Phenolic compound biochemistry. USA: Springer.
- Phenol Safety Data Sheet: https://www.carlroth.com/medias/SDB-3215-PL-PL.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0 YXNoZWV0c3wzOTI3OTN8YXBwbGljYXRpb24v cGRmfGFETTNMMmhpTUM4NU1qQXhPVGs0T WprNU1UWTJMMU5FUWw4ek1qRTFYMUJNW DFCTUxuQmtaZ3wwYjAzOTY5OGRjMTRiOWE wNDJjZmFjNjJjYjI0NTIwMWVjYjFmNjU1NWRj YzBhZTliMjRmM2JhYzcyNDE1YTY5 (in Polish, access 11.05.2025)
- Bajaj, M., Gallert, C., & Winter, J. (2009). Phenol degradation kinetics of an aerobic mixed culture. Biochemical Engineering Journal, 46(2), 205–209. DOI: 10.1016/j.bej.2009.05.021
- Min, X., Chu, C., Luo, Z., Ma, J., Fu, Y., Wei, Z., Spinney, R., Dionysiou, D.D., & Xiao, R. (2022). Transformation of phenol and nitrobenzene by superoxide radicals: Kinetics and mechanisms. Chemical Engineering Journal, 442(1), 136134. DOI: 10.1016/j.cej.2022.136134
- Ahmaruzzaman, M., Misha, S.R., Gadore, V., Yadav, G., Roy, S., Bhattacharjee, B., Bhuyan, A., Hazarika, B., Darabdhara, J., & Kumari, K. (2024). Phenolic compounds in water: From toxicity and source to sustainable solutions – An integrated review of removal methods, advanced technologies, cost analysis, and future prospects. Journal of Environmental Chemical Engineering, 12(3), 112964. DOI: 10.1016/j.jece.2024.112964
- Davì, M.L., & Gnudi, F. (1999). Phenolic compounds in surface water. Water Research, 33(14), 3213–3219. DOI: https://doi.org/10.1016/S0043-1354(99)00027-5
- Laganà Vinci, R., Arena, K., Rigano, F., Cacciola, F., Dugo, P., & Mondello, L. (2024). Prediction of retention data of phenolic compounds by quantitative structure retention relationship models under reverse-phase liquid chromatography. Journal of Chromatography A, 1730, 465146. DOI: 10.1016/j.chroma.2024.465146
- Zhang, J., Bing, W., Hu, T., Zhou, X., Zhang, J., Liang, J., & Li, Y. (2023). Enhanced biodegradation of phenol by microbial collaboration: Resistance, metabolite utilization, and pH stabilization. Environmental Research, 238(2), 117269. DOI: 10.1016/j.envres.2023.117269
- Zhao, H., Zhang, Z., Zhang, G., Hu, Z., He, M., Jia, J., Li, H., Zhang, X., & Zhou W. (2024). The promotion mechanism of different nitrogen doping types on the catalytic activity of activated carbon electro-Fenton cathode: Simultaneous promotion of H2O2 generation and phenol degradation ability. Environmental Research, 257, 119295. DOI: 10.1016/j.envres.2024.119295
- Mo, L., Chen, G., & Xu, B. (2024). Degradation of phenol by peroxymonosulfate catalyzed by cerium-doped amino-functionalized metal-organic frameworks (NH2-MIL-101 (Fe, Ce)). Journal of Environmental Chemical Engineering, 12(4), 113256. DOI: 10.1016/j.jece.2024.113256
- He, Y., Wang, Z., Li, T., Peng, X., Tang, Y., & Jia, X. (2022). Biodegradation of phenol by Candida tropicalis sp.: Kinetics, identification of putative genes and reconstruction of catabolic pathways by genomic and transcriptomic characteristics. Chemosphere, 308(3), 136443. DOI: 10.1016/j.chemosphere.2022.136443
- Cordova Villegas, L.G., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K.E., & Biswas, N. (2016). A short review of techniques for phenol removal from wastewater. Current Pollution Reports, 2, 157–167. DOI: 10.1007/s40726-016-0035-3
- Dornelles, H.S., Sabatini, C.A., Adorno, M.A.T., Silva, E.L., Lee, P.-H., & Varesche, M.B.A. (2024). Microbial synergies drive simultaneous biodegradation of ethoxy and alkyl chains of Nonylphenol Ethoxylate in fluidized bed reactors. Chemosphere, 358, 142084. DOI: 10.1016/j.chemosphere.2024.142084
- Woźniak, M., & Murias, M. (2008). Xenoestrogens: endocrine disrupting compounds. (in Polish). Ginekolog Polska, 79, 785–790.
- Szymański, A., & Wyrwas, B. (2010). Alkylphenols and their ethoxylates – hazardous substances with endocrine disruption activity. (in Polish). Water supply and water quality – present issues, 249–261. Retrieved from https://water.put.poznan.pl/images/fullpapers/2010/O CHRONA_WOD/233_WODA2010_T1_WODA_20 10_T1.pdf
- Acconcia, F., Fiocchetti, M., & Marino, M. (2017). Xenoestrogen regulation of ERα/ERβ balance in hormone-associated cancers. Molecular and Cellular Endocrinology, 457, 3–12. DOI: 10.1016/j.mce.2016.10.033
- Olak, M., Gmurek, M., & Miller, J.S. (2012). Phenolic compounds in the environment – occurrence and effect on living organisms. Proceedings of ECOpole, 6(2), 459-465. DOI: 10.2429/proc.2012.6(2)060
- Moujane, S., Bouadid, I., Bouymajane, A., Younes, F.Z., Benlyas, M., Mohammed, B., Cacciola, F., Laganà Vinci, R., Tropea, A., Mondello, L., Altemimi, A.B., Eddouks M., & Moualij, B. (2024). Biochemical and toxicity evaluation of Retama sphae-rocarpa extracts and in-silico investigation of phenolic compounds as potential inhibitors against HPV16 E6 oncoprotein. Fitoterapia, 175, 105923. DOI: 10.1016/j.fitote.2024.105923
- Reddy, V., McCarthy, M., & Raval, A.P. (2022). Xenoestrogens impact brain estrogen receptor signaling during the female lifespan: A precursor to neurological disease? Neurobiology of Disease, 163, 105596. DOI: 10.1016/j.nbd.2021.105596
- Jakimiuk, J.A., & Bogusiewicz, M. (2002), Selective Estrogen Receptor Modulators – turning point in therapy of menopause. (in Polish). Menopause Review, 4, 14–24.
- Kamińska, G., Kudlek, E., Dudziak, M., & Bohdziewicz, J. (2016). Removal of biologically active substances during mechanical-biological wastewater treatment. (in Polish). Inżynieria Ekologiczna, 50, 201–209. DOI: 10.12912/23920629/65502
- Gałamon, M., & Liwarska – Bizukojć, E. (2018). Determination of the selected xenoestrogens in water and wastewater. (in Polish). Technologia i Jakość Wyrobów, 63, 95–04.
- Anku, W.W., Mamo, M.A., & Govender, P.P. (2017). Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods. InTech, 419-443. DOI: 10.5772/66927. In M. Soto-Hernández, M. Palma-Tenango, & R. García-Mateos (Eds.), Phenolic Compounds – Natural Sources, Importance and Applications. InTech. DOI: 10.5772/67213
- Włodarczyk-Makuła, M. (2024). Selected organic micropollutants in the aquatic environment. Desalination and Water Treatment, 317, 100061. DOI: 10.1016/j.dwt.2024.100061
- Panigrahy, N., Priyadarshini, A., Sahoo, M.M., Verma, A.K., Daverey, A., & Sahoo, N.K. (2022). A comprehensive review on eco-toxicity and biodegradation of phenolics: Recent progress and future outlook. Environmental Technology & Innovation, 27, 102423. DOI: 10.1016/j.eti.2022.102423
- Dankaka, S.M., Muhammad, J.B., Usman, S., Jagaba, A.H., & Abdullahi, N. (2023). Phenol biodegradation by Acinetobacter baumanii and Citrobacter sedlakii isolated from petroleum products contaminated environment. Case Studies in Chemical and Environmental Engineering, 8, 100468. DOI: 10.1016/j.cscee.2023.100468
- Wojcieszyńska, D., Greń, I., Łabużek, S., & Respondek M. (2007). Substrate specificity and sensitiveness of phenol monooxygenase from Stenotrophomonas maltophilia strain KB2 versus theis potential application to bioremediation of the environment. (in Polish). Biotechnologia, 2(77), 181–191.
- Liwarska-Bizukojć, E., Olejnik, D., Gałamon, M., & Bernat, P. (2017). Acclimation of activated sludge to wastewater containing the selected micropollutants. (in Polish). Gaz, Woda i Technika Sanitarna, 8, 340–343. DOI: 10.15199/17.2017.8.5
- Panigrahy, N., Barik, M., & Sahoo, N.K. (2020). Kinetics of Phenol Biodegradation by an Indigenous Pseudomonas citronellolis NS1 Isolated from Coke Oven Wastewater. Journal of Hazardous, Toxic, and Radioactive Waste, 24(3), 04020019. DOI: 10.1061/(ASCE)HZ.2153-5515.0000502
- Huang, L., Liang, J., & Zhang, J. (2024). Characteristics of a novel acid-resistant phenoldegrading bacterium Acinetobacter pittii Hly3: Adaptability, kinetics, degradation pathway and longterm performance. International Biodeterioration & Biodegradation, 192, 105825. DOI: 10.1016/j.ibiod.2024.105825
- Zhang, C., Li, S., Sun, Z., Geng, Y., Zhang, Y., Shi, T., Hua, R., & Fang, L. (2023). Dual metabolic pathways co-determine the efficient aerobic biodegradation of phenol in Cupriavidus nantongensis X1. Journal of Hazardous Materials, 460, 132424. DOI: 10.1016/j.jhazmat.2023.132424
- Li, Q., Yan, S., Jiang, Z., Xian, L., Du, J., Liu, H., & Liu, Y. (2025). Co-biodegradation of cyanide and phenol by Alcaligenes faecalis JF101: Investigating interaction effects. International Biodeterioration & Biodegradation, 198, 105996. DOI: 10.1016/j.ibiod.2024.105996
- Kuc, M.E., Azerrad, S., Menashe, O., & Kurzbaum, E. (2022). Efficient biodegradation of phenol at high concentrations by Acinetobacter biofilm at extremely short hydraulic retention times. Journal of Water Process Engineering, 47, 102781. DOI: 10.1016/j.jwpe.2022.102781
- Li, Z., Zhu, Y., Ren, Z., Zhang, M., Huo, Y., & Li, Z. (2024). Enhancing biochemical degradation for phenol wastewater: A preliminary study on bioaugmentation technique of anaerobic digestion and simultaneous nitrification-denitrification coupled with fermentation. Journal of Water Process Engineering, 66, 105921. DOI: 10.1016/j.jwpe.2024.105921
- Raja, W., & Kumar, P. (2025). Domestic sewage management for elevated phenol and surfactant levels using Algal Bacterial Consortia (ABC) in a hybrid moving bed membrane bioreactor (MBMBR) system. Algal Research, 86, 103961. DOI: 10.1016/j.algal.2025.103961
- Zheng, Z., Li, J., & Wang, C. (2021). Rapid cultivation of the aerobic granules for simultaneous phenol degradation and ammonium oxidation in a sequencing batch reactor. Bioresource Technology, 325, 124414. DOI: 10.1016/j.biortech.2020.124414
- Zou, L., Yao, N., Li, J., Yang, S., Zhou, W., Sheng, J., Li, Z., Huang, Q., & Chen, W. (2025). Enhanced biodegradation of phenol using immobilized Pseudomonas alloputida BF04 in sequencing batch reactor. International Biodeterioration & Biodegradation, 201, 106030. DOI: 10.1016/j.ibiod.2025.106030
- Bing, W., Li, X., Zhao, Y., Wang, Y., Zhang, J., Zhang, J., & Liang, J. (2024). Collaboration of bacterial consortia for biodegradation of high concentration phenol and potential application of machine learning. Chemico-Biological Interactions, 399, 111153. DOI: 10.1016/j.cbi.2024.111153
- Bai, X., Nie, M., Diwu, Z., Wang, L., Nie, H., Wang, Y., Yin, Q., & Zhang, B. (2022). Simultaneous biodegradation of phenolics and petroleum hydrocarbons from semi-coking wastewater: Construction of bacterial consortium and their metabolic division of labor. Bioresource Technology, 347, 126377. DOI: 10.1016/j.biortech.2021.126377
- Sabri, I., Ng, K.X., Soffi, N.K.M., Yusoff, M.Z.M., Nor Muhammad, N.A., Ho, L.S., Maeda, T., & Ramli, N. (2025). Novel insights into indigenous phenoldegrading bacteria from palm oil mill effluent and their potential mechanisms for efficient phenol degradation. Environmental Technology & Innovation, 37, 103983. DOI: 10.1016/j.eti.2024.103983
- Singh, S., Behera, A.R., Ghosh, S., Daverey, A., & Dutta, K. (2024). Biodegradation of phenolic derivatives by Rhodosporidium toruloides: Effect on growth, cell morphology, lipid and biodiesel production. Journal of Water Process Engineering, 59, 104961. DOI: 10.1016/j.jwpe.2024.104961
- Liu, L., Si, L., Yang, J., Peng, L., Qiao, S., Sun, Y., & Guo, C. (2023). Biodegradation and process optimization of phenol and formaldehyde by Aspergillus nomius SGFA1. International Biodeterioration & Biodegradation, 182, 105630. DOI: 10.1016/j.ibiod.2023.105630
- Weber, A.C., da Silva, B.E., Cordeiro, S.G., Henn, G.S., Costa, B., dos Santos, J.S.H., Corbellini, V.A., Ethur, E.M., & Hoehne, L. (2023). Immobilization of commercial horseradish peroxidase in calcium alginate-starch hybrid support and its application in the biodegradation of phenol red dye. International Journal of Biological Macromolecules, 246, 125723. DOI: 10.1016/j.ijbiomac.2023.125723
- Barbusiński, K., Salwiczek, Sz., & Paszewska A. (2016). The use of chitosan for removing selected pollutants from water and wastewater – short review. Architecture Civil Engineering Environment, 9(2), 107-115. DOI: https://doi.org/10.21307/acee-2016-026
- Öndeş, B., Sunna, Ç., Kilimci, U., Aktaş Uygun, D., & Uygun, M. (2024). Enzymatic phenolics removal by tyrosinase-modified micromotors. Process Biochemistry, 147, 101–108. DOI: 10.1016/j.procbio.2024.08.012
- Gong, Z., Gao, S., Lu, K., Hübner, R., & Wu, C. (2024). Recyclable pickering emulsions for enzymatic phenol degradation of oily wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 682, 132922. DOI: 10.1016/j.colsurfa.2023.132922