Sobiesiak, M. (2017). Chemical Structure of Phenols and Its Consequence for Sorption Processes. InTech, 3–28. DOI: <a href="https://doi.org/10.5772/66537." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5772/66537.</a> In M. Soto-Hernández, M. Palma-Tenango, & R. García-Mateos (Eds.), Phenolic Compounds – Natural Sources, Importance and Applications. InTech. DOI: <a href="https://doi.org/10.5772/67213" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5772/67213</a>
Ahmaruzzaman, M., Misha, S.R., Gadore, V., Yadav, G., Roy, S., Bhattacharjee, B., Bhuyan, A., Hazarika, B., Darabdhara, J., & Kumari, K. (2024). Phenolic compounds in water: From toxicity and source to sustainable solutions – An integrated review of removal methods, advanced technologies, cost analysis, and future prospects. <em>Journal of Environmental Chemical Engineering, 12</em>(3), 112964. DOI: <a href="https://doi.org/10.1016/j.jece.2024.112964" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jece.2024.112964</a>
Laganà Vinci, R., Arena, K., Rigano, F., Cacciola, F., Dugo, P., & Mondello, L. (2024). Prediction of retention data of phenolic compounds by quantitative structure retention relationship models under reverse-phase liquid chromatography. <em>Journal of Chromatography A</em>, 1730, 465146. DOI: <a href="https://doi.org/10.1016/j.chroma.2024.465146" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.chroma.2024.465146</a>
Cordova Villegas, L.G., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K.E., & Biswas, N. (2016). A short review of techniques for phenol removal from wastewater. <em>Current Pollution Reports</em>, 2, 157–167. DOI: <a href="https://doi.org/10.1007/s40726-016-0035-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s40726-016-0035-3</a>
Szymański, A., & Wyrwas, B. (2010). Alkylphenols and their ethoxylates – hazardous substances with endocrine disruption activity. (in Polish). Water supply and water quality – present issues, 249–261. Retrieved from https://water.put.poznan.pl/images/fullpapers/2010/O CHRONA_WOD/233_WODA2010_T1_WODA_20 10_T1.pdf
Acconcia, F., Fiocchetti, M., & Marino, M. (2017). Xenoestrogen regulation of ERα/ERβ balance in hormone-associated cancers. <em>Molecular and Cellular Endocrinology</em>, 457, 3–12. DOI: <a href="https://doi.org/10.1016/j.mce.2016.10.033" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.mce.2016.10.033</a>
Olak, M., Gmurek, M., & Miller, J.S. (2012). Phenolic compounds in the environment – occurrence and effect on living organisms. <em>Proceedings of ECOpole, 6</em>(2), 459-465. DOI: <a href="https://doi.org/10.2429/proc.2012.6(2)060" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2429/proc.2012.6(2)060</a>
Moujane, S., Bouadid, I., Bouymajane, A., Younes, F.Z., Benlyas, M., Mohammed, B., Cacciola, F., Laganà Vinci, R., Tropea, A., Mondello, L., Altemimi, A.B., Eddouks M., & Moualij, B. (2024). Biochemical and toxicity evaluation of Retama sphae-rocarpa extracts and in-silico investigation of phenolic compounds as potential inhibitors against HPV16 E6 oncoprotein. <em>Fitoterapia</em>, 175, 105923. DOI: <a href="https://doi.org/10.1016/j.fitote.2024.105923" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.fitote.2024.105923</a>
Jakimiuk, J.A., & Bogusiewicz, M. (2002), Selective Estrogen Receptor Modulators – turning point in therapy of menopause. (in Polish). <em>Menopause Review</em>, 4, 14–24.
Kamińska, G., Kudlek, E., Dudziak, M., & Bohdziewicz, J. (2016). Removal of biologically active substances during mechanical-biological wastewater treatment. (in Polish). <em>Inżynieria Ekologiczna</em>, 50, 201–209. DOI: <a href="https://doi.org/10.12912/23920629/65502" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.12912/23920629/65502</a>
Gałamon, M., & Liwarska – Bizukojć, E. (2018). Determination of the selected xenoestrogens in water and wastewater. (in Polish). <em>Technologia i Jakość Wyrobów</em>, 63, 95–04.
Włodarczyk-Makuła, M. (2024). Selected organic micropollutants in the aquatic environment. <em>Desalination and Water Treatment</em>, 317, 100061. DOI: <a href="https://doi.org/10.1016/j.dwt.2024.100061" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.dwt.2024.100061</a>
Panigrahy, N., Priyadarshini, A., Sahoo, M.M., Verma, A.K., Daverey, A., & Sahoo, N.K. (2022). A comprehensive review on eco-toxicity and biodegradation of phenolics: Recent progress and future outlook. <em>Environmental Technology & Innovation</em>, 27, 102423. DOI: <a href="https://doi.org/10.1016/j.eti.2022.102423" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.eti.2022.102423</a>
Wojcieszyńska, D., Greń, I., Łabużek, S., & Respondek M. (2007). Substrate specificity and sensitiveness of phenol monooxygenase from Stenotrophomonas maltophilia strain KB2 versus theis potential application to bioremediation of the environment. (in Polish). <em>Biotechnologia, 2</em>(77), 181–191.
Liwarska-Bizukojć, E., Olejnik, D., Gałamon, M., & Bernat, P. (2017). Acclimation of activated sludge to wastewater containing the selected micropollutants. (in Polish). <em>Gaz, Woda i Technika Sanitarna</em>, 8, 340–343. DOI: <a href="https://doi.org/10.15199/17.2017.8.5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.15199/17.2017.8.5</a>
Panigrahy, N., Barik, M., & Sahoo, N.K. (2020). Kinetics of Phenol Biodegradation by an Indigenous Pseudomonas citronellolis NS1 Isolated from Coke Oven Wastewater. <em>Journal of Hazardous, Toxic, and Radioactive Waste, 24</em>(3), 04020019. DOI: <a href="https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000502" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1061/(ASCE)HZ.2153-5515.0000502</a>
Kuc, M.E., Azerrad, S., Menashe, O., & Kurzbaum, E. (2022). Efficient biodegradation of phenol at high concentrations by Acinetobacter biofilm at extremely short hydraulic retention times. <em>Journal of Water Process Engineering</em>, 47, 102781. DOI: <a href="https://doi.org/10.1016/j.jwpe.2022.102781" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jwpe.2022.102781</a>
Li, Z., Zhu, Y., Ren, Z., Zhang, M., Huo, Y., & Li, Z. (2024). Enhancing biochemical degradation for phenol wastewater: A preliminary study on bioaugmentation technique of anaerobic digestion and simultaneous nitrification-denitrification coupled with fermentation. <em>Journal of Water Process Engineering</em>, 66, 105921. DOI: <a href="https://doi.org/10.1016/j.jwpe.2024.105921" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jwpe.2024.105921</a>
Raja, W., & Kumar, P. (2025). Domestic sewage management for elevated phenol and surfactant levels using Algal Bacterial Consortia (ABC) in a hybrid moving bed membrane bioreactor (MBMBR) system. <em>Algal Research</em>, 86, 103961. DOI: <a href="https://doi.org/10.1016/j.algal.2025.103961" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.algal.2025.103961</a>
Zheng, Z., Li, J., & Wang, C. (2021). Rapid cultivation of the aerobic granules for simultaneous phenol degradation and ammonium oxidation in a sequencing batch reactor. <em>Bioresource Technology</em>, 325, 124414. DOI: <a href="https://doi.org/10.1016/j.biortech.2020.124414" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.biortech.2020.124414</a>
Bing, W., Li, X., Zhao, Y., Wang, Y., Zhang, J., Zhang, J., & Liang, J. (2024). Collaboration of bacterial consortia for biodegradation of high concentration phenol and potential application of machine learning. <em>Chemico-Biological Interactions</em>, 399, 111153. DOI: <a href="https://doi.org/10.1016/j.cbi.2024.111153" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cbi.2024.111153</a>
Bai, X., Nie, M., Diwu, Z., Wang, L., Nie, H., Wang, Y., Yin, Q., & Zhang, B. (2022). Simultaneous biodegradation of phenolics and petroleum hydrocarbons from semi-coking wastewater: Construction of bacterial consortium and their metabolic division of labor. <em>Bioresource Technology</em>, 347, 126377. DOI: <a href="https://doi.org/10.1016/j.biortech.2021.126377" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.biortech.2021.126377</a>
Singh, S., Behera, A.R., Ghosh, S., Daverey, A., & Dutta, K. (2024). Biodegradation of phenolic derivatives by Rhodosporidium toruloides: Effect on growth, cell morphology, lipid and biodiesel production. <em>Journal of Water Process Engineering</em>, 59, 104961. DOI: <a href="https://doi.org/10.1016/j.jwpe.2024.104961" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jwpe.2024.104961</a>
Weber, A.C., da Silva, B.E., Cordeiro, S.G., Henn, G.S., Costa, B., dos Santos, J.S.H., Corbellini, V.A., Ethur, E.M., & Hoehne, L. (2023). Immobilization of commercial horseradish peroxidase in calcium alginate-starch hybrid support and its application in the biodegradation of phenol red dye. <em>International Journal of Biological Macromolecules</em>, 246, 125723. DOI: <a href="https://doi.org/10.1016/j.ijbiomac.2023.125723" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijbiomac.2023.125723</a>
Barbusiński, K., Salwiczek, Sz., & Paszewska A. (2016). The use of chitosan for removing selected pollutants from water and wastewater – short review. <em>Architecture Civil Engineering Environment, 9</em>(2), 107-115. DOI: <a href="https://doi.org/10.21307/acee-2016-026" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.21307/acee-2016-026</a>
Gong, Z., Gao, S., Lu, K., Hübner, R., & Wu, C. (2024). Recyclable pickering emulsions for enzymatic phenol degradation of oily wastewater. <em>Colloids and Surfaces A: Physicochemical and Engineering Aspects</em>, 682, 132922. DOI: <a href="https://doi.org/10.1016/j.colsurfa.2023.132922" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.colsurfa.2023.132922</a>