Have a personal or library account? Click to login
Biological Removal of Phenolic Pollutants from Wastewater – A Short Review Cover

Biological Removal of Phenolic Pollutants from Wastewater – A Short Review

Open Access
|Sep 2025

References

  1. Sobiesiak, M. (2017). Chemical Structure of Phenols and Its Consequence for Sorption Processes. InTech, 3–28. DOI: <a href="https://doi.org/10.5772/66537." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5772/66537.</a> In M. Soto-Hernández, M. Palma-Tenango, &amp; R. García-Mateos (Eds.), Phenolic Compounds – Natural Sources, Importance and Applications. InTech. DOI: <a href="https://doi.org/10.5772/67213" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5772/67213</a>
  2. Vermerris, W., &amp; Nicholson, R. (2009). Phenolic compound biochemistry. USA: Springer.
  3. Phenol Safety Data Sheet: https://www.carlroth.com/medias/SDB-3215-PL-PL.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0 YXNoZWV0c3wzOTI3OTN8YXBwbGljYXRpb24v cGRmfGFETTNMMmhpTUM4NU1qQXhPVGs0T WprNU1UWTJMMU5FUWw4ek1qRTFYMUJNW DFCTUxuQmtaZ3wwYjAzOTY5OGRjMTRiOWE wNDJjZmFjNjJjYjI0NTIwMWVjYjFmNjU1NWRj YzBhZTliMjRmM2JhYzcyNDE1YTY5 (in Polish, access 11.05.2025)
  4. Bajaj, M., Gallert, C., &amp; Winter, J. (2009). Phenol degradation kinetics of an aerobic mixed culture. <em>Biochemical Engineering Journal, 46</em>(2), 205–209. DOI: <a href="https://doi.org/10.1016/j.bej.2009.05.021" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bej.2009.05.021</a>
  5. Min, X., Chu, C., Luo, Z., Ma, J., Fu, Y., Wei, Z., Spinney, R., Dionysiou, D.D., &amp; Xiao, R. (2022). Transformation of phenol and nitrobenzene by superoxide radicals: Kinetics and mechanisms. <em>Chemical Engineering Journal, 442</em>(1), 136134. DOI: <a href="https://doi.org/10.1016/j.cej.2022.136134" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cej.2022.136134</a>
  6. Ahmaruzzaman, M., Misha, S.R., Gadore, V., Yadav, G., Roy, S., Bhattacharjee, B., Bhuyan, A., Hazarika, B., Darabdhara, J., &amp; Kumari, K. (2024). Phenolic compounds in water: From toxicity and source to sustainable solutions – An integrated review of removal methods, advanced technologies, cost analysis, and future prospects. <em>Journal of Environmental Chemical Engineering, 12</em>(3), 112964. DOI: <a href="https://doi.org/10.1016/j.jece.2024.112964" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jece.2024.112964</a>
  7. Davì, M.L., &amp; Gnudi, F. (1999). Phenolic compounds in surface water. <em>Water Research, 33</em>(14), 3213–3219. DOI: <a href="https://doi.org/10.1016/S0043-1354(99)00027-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0043-1354(99)00027-5</a>
  8. Laganà Vinci, R., Arena, K., Rigano, F., Cacciola, F., Dugo, P., &amp; Mondello, L. (2024). Prediction of retention data of phenolic compounds by quantitative structure retention relationship models under reverse-phase liquid chromatography. <em>Journal of Chromatography A</em>, 1730, 465146. DOI: <a href="https://doi.org/10.1016/j.chroma.2024.465146" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.chroma.2024.465146</a>
  9. Zhang, J., Bing, W., Hu, T., Zhou, X., Zhang, J., Liang, J., &amp; Li, Y. (2023). Enhanced biodegradation of phenol by microbial collaboration: Resistance, metabolite utilization, and pH stabilization. <em>Environmental Research, 238</em>(2), 117269. DOI: <a href="https://doi.org/10.1016/j.envres.2023.117269" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.envres.2023.117269</a>
  10. Zhao, H., Zhang, Z., Zhang, G., Hu, Z., He, M., Jia, J., Li, H., Zhang, X., &amp; Zhou W. (2024). The promotion mechanism of different nitrogen doping types on the catalytic activity of activated carbon electro-Fenton cathode: Simultaneous promotion of H2O2 generation and phenol degradation ability. <em>Environmental Research</em>, 257, 119295. DOI: <a href="https://doi.org/10.1016/j.envres.2024.119295" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.envres.2024.119295</a>
  11. Mo, L., Chen, G., &amp; Xu, B. (2024). Degradation of phenol by peroxymonosulfate catalyzed by cerium-doped amino-functionalized metal-organic frameworks (NH2-MIL-101 (Fe, Ce)). <em>Journal of Environmental Chemical Engineering, 12</em>(4), 113256. DOI: <a href="https://doi.org/10.1016/j.jece.2024.113256" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jece.2024.113256</a>
  12. He, Y., Wang, Z., Li, T., Peng, X., Tang, Y., &amp; Jia, X. (2022). Biodegradation of phenol by Candida tropicalis sp.: Kinetics, identification of putative genes and reconstruction of catabolic pathways by genomic and transcriptomic characteristics. <em>Chemosphere, 308</em>(3), 136443. DOI: <a href="https://doi.org/10.1016/j.chemosphere.2022.136443" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.chemosphere.2022.136443</a>
  13. Cordova Villegas, L.G., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K.E., &amp; Biswas, N. (2016). A short review of techniques for phenol removal from wastewater. <em>Current Pollution Reports</em>, 2, 157–167. DOI: <a href="https://doi.org/10.1007/s40726-016-0035-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s40726-016-0035-3</a>
  14. Dornelles, H.S., Sabatini, C.A., Adorno, M.A.T., Silva, E.L., Lee, P.-H., &amp; Varesche, M.B.A. (2024). Microbial synergies drive simultaneous biodegradation of ethoxy and alkyl chains of Nonylphenol Ethoxylate in fluidized bed reactors. <em>Chemosphere</em>, 358, 142084. DOI: <a href="https://doi.org/10.1016/j.chemosphere.2024.142084" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.chemosphere.2024.142084</a>
  15. Woźniak, M., &amp; Murias, M. (2008). Xenoestrogens: endocrine disrupting compounds. (in Polish). <em>Ginekolog Polska</em>, 79, 785–790.
  16. Szymański, A., &amp; Wyrwas, B. (2010). Alkylphenols and their ethoxylates – hazardous substances with endocrine disruption activity. (in Polish). Water supply and water quality – present issues, 249–261. Retrieved from https://water.put.poznan.pl/images/fullpapers/2010/O CHRONA_WOD/233_WODA2010_T1_WODA_20 10_T1.pdf
  17. Acconcia, F., Fiocchetti, M., &amp; Marino, M. (2017). Xenoestrogen regulation of ERα/ERβ balance in hormone-associated cancers. <em>Molecular and Cellular Endocrinology</em>, 457, 3–12. DOI: <a href="https://doi.org/10.1016/j.mce.2016.10.033" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.mce.2016.10.033</a>
  18. Olak, M., Gmurek, M., &amp; Miller, J.S. (2012). Phenolic compounds in the environment – occurrence and effect on living organisms. <em>Proceedings of ECOpole, 6</em>(2), 459-465. DOI: <a href="https://doi.org/10.2429/proc.2012.6(2)060" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2429/proc.2012.6(2)060</a>
  19. Moujane, S., Bouadid, I., Bouymajane, A., Younes, F.Z., Benlyas, M., Mohammed, B., Cacciola, F., Laganà Vinci, R., Tropea, A., Mondello, L., Altemimi, A.B., Eddouks M., &amp; Moualij, B. (2024). Biochemical and toxicity evaluation of Retama sphae-rocarpa extracts and in-silico investigation of phenolic compounds as potential inhibitors against HPV16 E6 oncoprotein. <em>Fitoterapia</em>, 175, 105923. DOI: <a href="https://doi.org/10.1016/j.fitote.2024.105923" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.fitote.2024.105923</a>
  20. Reddy, V., McCarthy, M., &amp; Raval, A.P. (2022). Xenoestrogens impact brain estrogen receptor signaling during the female lifespan: A precursor to neurological disease? <em>Neurobiology of Disease</em>, 163, 105596. DOI: <a href="https://doi.org/10.1016/j.nbd.2021.105596" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.nbd.2021.105596</a>
  21. Jakimiuk, J.A., &amp; Bogusiewicz, M. (2002), Selective Estrogen Receptor Modulators – turning point in therapy of menopause. (in Polish). <em>Menopause Review</em>, 4, 14–24.
  22. Kamińska, G., Kudlek, E., Dudziak, M., &amp; Bohdziewicz, J. (2016). Removal of biologically active substances during mechanical-biological wastewater treatment. (in Polish). <em>Inżynieria Ekologiczna</em>, 50, 201–209. DOI: <a href="https://doi.org/10.12912/23920629/65502" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.12912/23920629/65502</a>
  23. Gałamon, M., &amp; Liwarska – Bizukojć, E. (2018). Determination of the selected xenoestrogens in water and wastewater. (in Polish). <em>Technologia i Jakość Wyrobów</em>, 63, 95–04.
  24. Anku, W.W., Mamo, M.A., &amp; Govender, P.P. (2017). Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods. InTech, 419-443. DOI: <a href="https://doi.org/10.5772/66927." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5772/66927.</a> In M. Soto-Hernández, M. Palma-Tenango, &amp; R. García-Mateos (Eds.), Phenolic Compounds – Natural Sources, Importance and Applications. InTech. DOI: <a href="https://doi.org/10.5772/67213" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5772/67213</a>
  25. Włodarczyk-Makuła, M. (2024). Selected organic micropollutants in the aquatic environment. <em>Desalination and Water Treatment</em>, 317, 100061. DOI: <a href="https://doi.org/10.1016/j.dwt.2024.100061" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.dwt.2024.100061</a>
  26. Panigrahy, N., Priyadarshini, A., Sahoo, M.M., Verma, A.K., Daverey, A., &amp; Sahoo, N.K. (2022). A comprehensive review on eco-toxicity and biodegradation of phenolics: Recent progress and future outlook. <em>Environmental Technology &amp; Innovation</em>, 27, 102423. DOI: <a href="https://doi.org/10.1016/j.eti.2022.102423" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.eti.2022.102423</a>
  27. Dankaka, S.M., Muhammad, J.B., Usman, S., Jagaba, A.H., &amp; Abdullahi, N. (2023). Phenol biodegradation by Acinetobacter baumanii and Citrobacter sedlakii isolated from petroleum products contaminated environment. <em>Case Studies in Chemical and Environmental Engineering</em>, 8, 100468. DOI: <a href="https://doi.org/10.1016/j.cscee.2023.100468" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cscee.2023.100468</a>
  28. Wojcieszyńska, D., Greń, I., Łabużek, S., &amp; Respondek M. (2007). Substrate specificity and sensitiveness of phenol monooxygenase from Stenotrophomonas maltophilia strain KB2 versus theis potential application to bioremediation of the environment. (in Polish). <em>Biotechnologia, 2</em>(77), 181–191.
  29. Liwarska-Bizukojć, E., Olejnik, D., Gałamon, M., &amp; Bernat, P. (2017). Acclimation of activated sludge to wastewater containing the selected micropollutants. (in Polish). <em>Gaz, Woda i Technika Sanitarna</em>, 8, 340–343. DOI: <a href="https://doi.org/10.15199/17.2017.8.5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.15199/17.2017.8.5</a>
  30. Panigrahy, N., Barik, M., &amp; Sahoo, N.K. (2020). Kinetics of Phenol Biodegradation by an Indigenous Pseudomonas citronellolis NS1 Isolated from Coke Oven Wastewater. <em>Journal of Hazardous, Toxic, and Radioactive Waste, 24</em>(3), 04020019. DOI: <a href="https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000502" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1061/(ASCE)HZ.2153-5515.0000502</a>
  31. Huang, L., Liang, J., &amp; Zhang, J. (2024). Characteristics of a novel acid-resistant phenoldegrading bacterium Acinetobacter pittii Hly3: Adaptability, kinetics, degradation pathway and longterm performance. <em>International Biodeterioration &amp; Biodegradation</em>, 192, 105825. DOI: <a href="https://doi.org/10.1016/j.ibiod.2024.105825" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ibiod.2024.105825</a>
  32. Zhang, C., Li, S., Sun, Z., Geng, Y., Zhang, Y., Shi, T., Hua, R., &amp; Fang, L. (2023). Dual metabolic pathways co-determine the efficient aerobic biodegradation of phenol in Cupriavidus nantongensis X1. <em>Journal of Hazardous Materials</em>, 460, 132424. DOI: <a href="https://doi.org/10.1016/j.jhazmat.2023.132424" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jhazmat.2023.132424</a>
  33. Li, Q., Yan, S., Jiang, Z., Xian, L., Du, J., Liu, H., &amp; Liu, Y. (2025). Co-biodegradation of cyanide and phenol by Alcaligenes faecalis JF101: Investigating interaction effects. <em>International Biodeterioration &amp; Biodegradation</em>, 198, 105996. DOI: <a href="https://doi.org/10.1016/j.ibiod.2024.105996" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ibiod.2024.105996</a>
  34. Kuc, M.E., Azerrad, S., Menashe, O., &amp; Kurzbaum, E. (2022). Efficient biodegradation of phenol at high concentrations by Acinetobacter biofilm at extremely short hydraulic retention times. <em>Journal of Water Process Engineering</em>, 47, 102781. DOI: <a href="https://doi.org/10.1016/j.jwpe.2022.102781" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jwpe.2022.102781</a>
  35. Li, Z., Zhu, Y., Ren, Z., Zhang, M., Huo, Y., &amp; Li, Z. (2024). Enhancing biochemical degradation for phenol wastewater: A preliminary study on bioaugmentation technique of anaerobic digestion and simultaneous nitrification-denitrification coupled with fermentation. <em>Journal of Water Process Engineering</em>, 66, 105921. DOI: <a href="https://doi.org/10.1016/j.jwpe.2024.105921" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jwpe.2024.105921</a>
  36. Raja, W., &amp; Kumar, P. (2025). Domestic sewage management for elevated phenol and surfactant levels using Algal Bacterial Consortia (ABC) in a hybrid moving bed membrane bioreactor (MBMBR) system. <em>Algal Research</em>, 86, 103961. DOI: <a href="https://doi.org/10.1016/j.algal.2025.103961" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.algal.2025.103961</a>
  37. Zheng, Z., Li, J., &amp; Wang, C. (2021). Rapid cultivation of the aerobic granules for simultaneous phenol degradation and ammonium oxidation in a sequencing batch reactor. <em>Bioresource Technology</em>, 325, 124414. DOI: <a href="https://doi.org/10.1016/j.biortech.2020.124414" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.biortech.2020.124414</a>
  38. Zou, L., Yao, N., Li, J., Yang, S., Zhou, W., Sheng, J., Li, Z., Huang, Q., &amp; Chen, W. (2025). Enhanced biodegradation of phenol using immobilized Pseudomonas alloputida BF04 in sequencing batch reactor. <em>International Biodeterioration &amp; Biodegradation</em>, 201, 106030. DOI: <a href="https://doi.org/10.1016/j.ibiod.2025.106030" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ibiod.2025.106030</a>
  39. Bing, W., Li, X., Zhao, Y., Wang, Y., Zhang, J., Zhang, J., &amp; Liang, J. (2024). Collaboration of bacterial consortia for biodegradation of high concentration phenol and potential application of machine learning. <em>Chemico-Biological Interactions</em>, 399, 111153. DOI: <a href="https://doi.org/10.1016/j.cbi.2024.111153" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cbi.2024.111153</a>
  40. Bai, X., Nie, M., Diwu, Z., Wang, L., Nie, H., Wang, Y., Yin, Q., &amp; Zhang, B. (2022). Simultaneous biodegradation of phenolics and petroleum hydrocarbons from semi-coking wastewater: Construction of bacterial consortium and their metabolic division of labor. <em>Bioresource Technology</em>, 347, 126377. DOI: <a href="https://doi.org/10.1016/j.biortech.2021.126377" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.biortech.2021.126377</a>
  41. Sabri, I., Ng, K.X., Soffi, N.K.M., Yusoff, M.Z.M., Nor Muhammad, N.A., Ho, L.S., Maeda, T., &amp; Ramli, N. (2025). Novel insights into indigenous phenoldegrading bacteria from palm oil mill effluent and their potential mechanisms for efficient phenol degradation. <em>Environmental Technology &amp; Innovation</em>, 37, 103983. DOI: <a href="https://doi.org/10.1016/j.eti.2024.103983" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.eti.2024.103983</a>
  42. Singh, S., Behera, A.R., Ghosh, S., Daverey, A., &amp; Dutta, K. (2024). Biodegradation of phenolic derivatives by Rhodosporidium toruloides: Effect on growth, cell morphology, lipid and biodiesel production. <em>Journal of Water Process Engineering</em>, 59, 104961. DOI: <a href="https://doi.org/10.1016/j.jwpe.2024.104961" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jwpe.2024.104961</a>
  43. Liu, L., Si, L., Yang, J., Peng, L., Qiao, S., Sun, Y., &amp; Guo, C. (2023). Biodegradation and process optimization of phenol and formaldehyde by Aspergillus nomius SGFA1. <em>International Biodeterioration &amp; Biodegradation</em>, 182, 105630. DOI: <a href="https://doi.org/10.1016/j.ibiod.2023.105630" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ibiod.2023.105630</a>
  44. Weber, A.C., da Silva, B.E., Cordeiro, S.G., Henn, G.S., Costa, B., dos Santos, J.S.H., Corbellini, V.A., Ethur, E.M., &amp; Hoehne, L. (2023). Immobilization of commercial horseradish peroxidase in calcium alginate-starch hybrid support and its application in the biodegradation of phenol red dye. <em>International Journal of Biological Macromolecules</em>, 246, 125723. DOI: <a href="https://doi.org/10.1016/j.ijbiomac.2023.125723" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijbiomac.2023.125723</a>
  45. Barbusiński, K., Salwiczek, Sz., &amp; Paszewska A. (2016). The use of chitosan for removing selected pollutants from water and wastewater – short review. <em>Architecture Civil Engineering Environment, 9</em>(2), 107-115. DOI: <a href="https://doi.org/10.21307/acee-2016-026" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.21307/acee-2016-026</a>
  46. Öndeş, B., Sunna, Ç., Kilimci, U., Aktaş Uygun, D., &amp; Uygun, M. (2024). Enzymatic phenolics removal by tyrosinase-modified micromotors. <em>Process Biochemistry</em>, 147, 101–108. DOI: <a href="https://doi.org/10.1016/j.procbio.2024.08.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.procbio.2024.08.012</a>
  47. Gong, Z., Gao, S., Lu, K., Hübner, R., &amp; Wu, C. (2024). Recyclable pickering emulsions for enzymatic phenol degradation of oily wastewater. <em>Colloids and Surfaces A: Physicochemical and Engineering Aspects</em>, 682, 132922. DOI: <a href="https://doi.org/10.1016/j.colsurfa.2023.132922" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.colsurfa.2023.132922</a>
DOI: https://doi.org/10.2478/acee-2025-0034 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 115 - 128
Submitted on: Jun 30, 2025
Accepted on: Jul 24, 2025
Published on: Sep 30, 2025
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Agnieszka BLUSZCZ, Krzysztof BARBUSIŃSKI, Barbara PIECZYKOLAN, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.