Have a personal or library account? Click to login
Biological Removal of Phenolic Pollutants from Wastewater – A Short Review Cover

Biological Removal of Phenolic Pollutants from Wastewater – A Short Review

Open Access
|Sep 2025

References

  1. Sobiesiak, M. (2017). Chemical Structure of Phenols and Its Consequence for Sorption Processes. InTech, 3–28. DOI: 10.5772/66537. In M. Soto-Hernández, M. Palma-Tenango, & R. García-Mateos (Eds.), Phenolic Compounds – Natural Sources, Importance and Applications. InTech. DOI: 10.5772/67213
  2. Vermerris, W., & Nicholson, R. (2009). Phenolic compound biochemistry. USA: Springer.
  3. Phenol Safety Data Sheet: https://www.carlroth.com/medias/SDB-3215-PL-PL.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0 YXNoZWV0c3wzOTI3OTN8YXBwbGljYXRpb24v cGRmfGFETTNMMmhpTUM4NU1qQXhPVGs0T WprNU1UWTJMMU5FUWw4ek1qRTFYMUJNW DFCTUxuQmtaZ3wwYjAzOTY5OGRjMTRiOWE wNDJjZmFjNjJjYjI0NTIwMWVjYjFmNjU1NWRj YzBhZTliMjRmM2JhYzcyNDE1YTY5 (in Polish, access 11.05.2025)
  4. Bajaj, M., Gallert, C., & Winter, J. (2009). Phenol degradation kinetics of an aerobic mixed culture. Biochemical Engineering Journal, 46(2), 205–209. DOI: 10.1016/j.bej.2009.05.021
  5. Min, X., Chu, C., Luo, Z., Ma, J., Fu, Y., Wei, Z., Spinney, R., Dionysiou, D.D., & Xiao, R. (2022). Transformation of phenol and nitrobenzene by superoxide radicals: Kinetics and mechanisms. Chemical Engineering Journal, 442(1), 136134. DOI: 10.1016/j.cej.2022.136134
  6. Ahmaruzzaman, M., Misha, S.R., Gadore, V., Yadav, G., Roy, S., Bhattacharjee, B., Bhuyan, A., Hazarika, B., Darabdhara, J., & Kumari, K. (2024). Phenolic compounds in water: From toxicity and source to sustainable solutions – An integrated review of removal methods, advanced technologies, cost analysis, and future prospects. Journal of Environmental Chemical Engineering, 12(3), 112964. DOI: 10.1016/j.jece.2024.112964
  7. Davì, M.L., & Gnudi, F. (1999). Phenolic compounds in surface water. Water Research, 33(14), 3213–3219. DOI: https://doi.org/10.1016/S0043-1354(99)00027-5
  8. Laganà Vinci, R., Arena, K., Rigano, F., Cacciola, F., Dugo, P., & Mondello, L. (2024). Prediction of retention data of phenolic compounds by quantitative structure retention relationship models under reverse-phase liquid chromatography. Journal of Chromatography A, 1730, 465146. DOI: 10.1016/j.chroma.2024.465146
  9. Zhang, J., Bing, W., Hu, T., Zhou, X., Zhang, J., Liang, J., & Li, Y. (2023). Enhanced biodegradation of phenol by microbial collaboration: Resistance, metabolite utilization, and pH stabilization. Environmental Research, 238(2), 117269. DOI: 10.1016/j.envres.2023.117269
  10. Zhao, H., Zhang, Z., Zhang, G., Hu, Z., He, M., Jia, J., Li, H., Zhang, X., & Zhou W. (2024). The promotion mechanism of different nitrogen doping types on the catalytic activity of activated carbon electro-Fenton cathode: Simultaneous promotion of H2O2 generation and phenol degradation ability. Environmental Research, 257, 119295. DOI: 10.1016/j.envres.2024.119295
  11. Mo, L., Chen, G., & Xu, B. (2024). Degradation of phenol by peroxymonosulfate catalyzed by cerium-doped amino-functionalized metal-organic frameworks (NH2-MIL-101 (Fe, Ce)). Journal of Environmental Chemical Engineering, 12(4), 113256. DOI: 10.1016/j.jece.2024.113256
  12. He, Y., Wang, Z., Li, T., Peng, X., Tang, Y., & Jia, X. (2022). Biodegradation of phenol by Candida tropicalis sp.: Kinetics, identification of putative genes and reconstruction of catabolic pathways by genomic and transcriptomic characteristics. Chemosphere, 308(3), 136443. DOI: 10.1016/j.chemosphere.2022.136443
  13. Cordova Villegas, L.G., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K.E., & Biswas, N. (2016). A short review of techniques for phenol removal from wastewater. Current Pollution Reports, 2, 157–167. DOI: 10.1007/s40726-016-0035-3
  14. Dornelles, H.S., Sabatini, C.A., Adorno, M.A.T., Silva, E.L., Lee, P.-H., & Varesche, M.B.A. (2024). Microbial synergies drive simultaneous biodegradation of ethoxy and alkyl chains of Nonylphenol Ethoxylate in fluidized bed reactors. Chemosphere, 358, 142084. DOI: 10.1016/j.chemosphere.2024.142084
  15. Woźniak, M., & Murias, M. (2008). Xenoestrogens: endocrine disrupting compounds. (in Polish). Ginekolog Polska, 79, 785–790.
  16. Szymański, A., & Wyrwas, B. (2010). Alkylphenols and their ethoxylates – hazardous substances with endocrine disruption activity. (in Polish). Water supply and water quality – present issues, 249–261. Retrieved from https://water.put.poznan.pl/images/fullpapers/2010/O CHRONA_WOD/233_WODA2010_T1_WODA_20 10_T1.pdf
  17. Acconcia, F., Fiocchetti, M., & Marino, M. (2017). Xenoestrogen regulation of ERα/ERβ balance in hormone-associated cancers. Molecular and Cellular Endocrinology, 457, 3–12. DOI: 10.1016/j.mce.2016.10.033
  18. Olak, M., Gmurek, M., & Miller, J.S. (2012). Phenolic compounds in the environment – occurrence and effect on living organisms. Proceedings of ECOpole, 6(2), 459-465. DOI: 10.2429/proc.2012.6(2)060
  19. Moujane, S., Bouadid, I., Bouymajane, A., Younes, F.Z., Benlyas, M., Mohammed, B., Cacciola, F., Laganà Vinci, R., Tropea, A., Mondello, L., Altemimi, A.B., Eddouks M., & Moualij, B. (2024). Biochemical and toxicity evaluation of Retama sphae-rocarpa extracts and in-silico investigation of phenolic compounds as potential inhibitors against HPV16 E6 oncoprotein. Fitoterapia, 175, 105923. DOI: 10.1016/j.fitote.2024.105923
  20. Reddy, V., McCarthy, M., & Raval, A.P. (2022). Xenoestrogens impact brain estrogen receptor signaling during the female lifespan: A precursor to neurological disease? Neurobiology of Disease, 163, 105596. DOI: 10.1016/j.nbd.2021.105596
  21. Jakimiuk, J.A., & Bogusiewicz, M. (2002), Selective Estrogen Receptor Modulators – turning point in therapy of menopause. (in Polish). Menopause Review, 4, 14–24.
  22. Kamińska, G., Kudlek, E., Dudziak, M., & Bohdziewicz, J. (2016). Removal of biologically active substances during mechanical-biological wastewater treatment. (in Polish). Inżynieria Ekologiczna, 50, 201–209. DOI: 10.12912/23920629/65502
  23. Gałamon, M., & Liwarska – Bizukojć, E. (2018). Determination of the selected xenoestrogens in water and wastewater. (in Polish). Technologia i Jakość Wyrobów, 63, 95–04.
  24. Anku, W.W., Mamo, M.A., & Govender, P.P. (2017). Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods. InTech, 419-443. DOI: 10.5772/66927. In M. Soto-Hernández, M. Palma-Tenango, & R. García-Mateos (Eds.), Phenolic Compounds – Natural Sources, Importance and Applications. InTech. DOI: 10.5772/67213
  25. Włodarczyk-Makuła, M. (2024). Selected organic micropollutants in the aquatic environment. Desalination and Water Treatment, 317, 100061. DOI: 10.1016/j.dwt.2024.100061
  26. Panigrahy, N., Priyadarshini, A., Sahoo, M.M., Verma, A.K., Daverey, A., & Sahoo, N.K. (2022). A comprehensive review on eco-toxicity and biodegradation of phenolics: Recent progress and future outlook. Environmental Technology & Innovation, 27, 102423. DOI: 10.1016/j.eti.2022.102423
  27. Dankaka, S.M., Muhammad, J.B., Usman, S., Jagaba, A.H., & Abdullahi, N. (2023). Phenol biodegradation by Acinetobacter baumanii and Citrobacter sedlakii isolated from petroleum products contaminated environment. Case Studies in Chemical and Environmental Engineering, 8, 100468. DOI: 10.1016/j.cscee.2023.100468
  28. Wojcieszyńska, D., Greń, I., Łabużek, S., & Respondek M. (2007). Substrate specificity and sensitiveness of phenol monooxygenase from Stenotrophomonas maltophilia strain KB2 versus theis potential application to bioremediation of the environment. (in Polish). Biotechnologia, 2(77), 181–191.
  29. Liwarska-Bizukojć, E., Olejnik, D., Gałamon, M., & Bernat, P. (2017). Acclimation of activated sludge to wastewater containing the selected micropollutants. (in Polish). Gaz, Woda i Technika Sanitarna, 8, 340–343. DOI: 10.15199/17.2017.8.5
  30. Panigrahy, N., Barik, M., & Sahoo, N.K. (2020). Kinetics of Phenol Biodegradation by an Indigenous Pseudomonas citronellolis NS1 Isolated from Coke Oven Wastewater. Journal of Hazardous, Toxic, and Radioactive Waste, 24(3), 04020019. DOI: 10.1061/(ASCE)HZ.2153-5515.0000502
  31. Huang, L., Liang, J., & Zhang, J. (2024). Characteristics of a novel acid-resistant phenoldegrading bacterium Acinetobacter pittii Hly3: Adaptability, kinetics, degradation pathway and longterm performance. International Biodeterioration & Biodegradation, 192, 105825. DOI: 10.1016/j.ibiod.2024.105825
  32. Zhang, C., Li, S., Sun, Z., Geng, Y., Zhang, Y., Shi, T., Hua, R., & Fang, L. (2023). Dual metabolic pathways co-determine the efficient aerobic biodegradation of phenol in Cupriavidus nantongensis X1. Journal of Hazardous Materials, 460, 132424. DOI: 10.1016/j.jhazmat.2023.132424
  33. Li, Q., Yan, S., Jiang, Z., Xian, L., Du, J., Liu, H., & Liu, Y. (2025). Co-biodegradation of cyanide and phenol by Alcaligenes faecalis JF101: Investigating interaction effects. International Biodeterioration & Biodegradation, 198, 105996. DOI: 10.1016/j.ibiod.2024.105996
  34. Kuc, M.E., Azerrad, S., Menashe, O., & Kurzbaum, E. (2022). Efficient biodegradation of phenol at high concentrations by Acinetobacter biofilm at extremely short hydraulic retention times. Journal of Water Process Engineering, 47, 102781. DOI: 10.1016/j.jwpe.2022.102781
  35. Li, Z., Zhu, Y., Ren, Z., Zhang, M., Huo, Y., & Li, Z. (2024). Enhancing biochemical degradation for phenol wastewater: A preliminary study on bioaugmentation technique of anaerobic digestion and simultaneous nitrification-denitrification coupled with fermentation. Journal of Water Process Engineering, 66, 105921. DOI: 10.1016/j.jwpe.2024.105921
  36. Raja, W., & Kumar, P. (2025). Domestic sewage management for elevated phenol and surfactant levels using Algal Bacterial Consortia (ABC) in a hybrid moving bed membrane bioreactor (MBMBR) system. Algal Research, 86, 103961. DOI: 10.1016/j.algal.2025.103961
  37. Zheng, Z., Li, J., & Wang, C. (2021). Rapid cultivation of the aerobic granules for simultaneous phenol degradation and ammonium oxidation in a sequencing batch reactor. Bioresource Technology, 325, 124414. DOI: 10.1016/j.biortech.2020.124414
  38. Zou, L., Yao, N., Li, J., Yang, S., Zhou, W., Sheng, J., Li, Z., Huang, Q., & Chen, W. (2025). Enhanced biodegradation of phenol using immobilized Pseudomonas alloputida BF04 in sequencing batch reactor. International Biodeterioration & Biodegradation, 201, 106030. DOI: 10.1016/j.ibiod.2025.106030
  39. Bing, W., Li, X., Zhao, Y., Wang, Y., Zhang, J., Zhang, J., & Liang, J. (2024). Collaboration of bacterial consortia for biodegradation of high concentration phenol and potential application of machine learning. Chemico-Biological Interactions, 399, 111153. DOI: 10.1016/j.cbi.2024.111153
  40. Bai, X., Nie, M., Diwu, Z., Wang, L., Nie, H., Wang, Y., Yin, Q., & Zhang, B. (2022). Simultaneous biodegradation of phenolics and petroleum hydrocarbons from semi-coking wastewater: Construction of bacterial consortium and their metabolic division of labor. Bioresource Technology, 347, 126377. DOI: 10.1016/j.biortech.2021.126377
  41. Sabri, I., Ng, K.X., Soffi, N.K.M., Yusoff, M.Z.M., Nor Muhammad, N.A., Ho, L.S., Maeda, T., & Ramli, N. (2025). Novel insights into indigenous phenoldegrading bacteria from palm oil mill effluent and their potential mechanisms for efficient phenol degradation. Environmental Technology & Innovation, 37, 103983. DOI: 10.1016/j.eti.2024.103983
  42. Singh, S., Behera, A.R., Ghosh, S., Daverey, A., & Dutta, K. (2024). Biodegradation of phenolic derivatives by Rhodosporidium toruloides: Effect on growth, cell morphology, lipid and biodiesel production. Journal of Water Process Engineering, 59, 104961. DOI: 10.1016/j.jwpe.2024.104961
  43. Liu, L., Si, L., Yang, J., Peng, L., Qiao, S., Sun, Y., & Guo, C. (2023). Biodegradation and process optimization of phenol and formaldehyde by Aspergillus nomius SGFA1. International Biodeterioration & Biodegradation, 182, 105630. DOI: 10.1016/j.ibiod.2023.105630
  44. Weber, A.C., da Silva, B.E., Cordeiro, S.G., Henn, G.S., Costa, B., dos Santos, J.S.H., Corbellini, V.A., Ethur, E.M., & Hoehne, L. (2023). Immobilization of commercial horseradish peroxidase in calcium alginate-starch hybrid support and its application in the biodegradation of phenol red dye. International Journal of Biological Macromolecules, 246, 125723. DOI: 10.1016/j.ijbiomac.2023.125723
  45. Barbusiński, K., Salwiczek, Sz., & Paszewska A. (2016). The use of chitosan for removing selected pollutants from water and wastewater – short review. Architecture Civil Engineering Environment, 9(2), 107-115. DOI: https://doi.org/10.21307/acee-2016-026
  46. Öndeş, B., Sunna, Ç., Kilimci, U., Aktaş Uygun, D., & Uygun, M. (2024). Enzymatic phenolics removal by tyrosinase-modified micromotors. Process Biochemistry, 147, 101–108. DOI: 10.1016/j.procbio.2024.08.012
  47. Gong, Z., Gao, S., Lu, K., Hübner, R., & Wu, C. (2024). Recyclable pickering emulsions for enzymatic phenol degradation of oily wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 682, 132922. DOI: 10.1016/j.colsurfa.2023.132922
DOI: https://doi.org/10.2478/acee-2025-0034 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 115 - 128
Submitted on: Jun 30, 2025
|
Accepted on: Jul 24, 2025
|
Published on: Sep 30, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Agnieszka BLUSZCZ, Krzysztof BARBUSIŃSKI, Barbara PIECZYKOLAN, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.