Have a personal or library account? Click to login
A Comprehensive Review of Caffeine and Nicotine as Emerging Environmental Contaminants in Water Systems Cover

A Comprehensive Review of Caffeine and Nicotine as Emerging Environmental Contaminants in Water Systems

Open Access
|Jul 2025

References

  1. Mofijur, M., Hasan, M. M., Ahmed, S. F., Djavanroodi, F., Fattah, I. M. R., Silitonga, A. S., Kalam, M. A., Zhou, J. L., & Khan, T. M. Y. (2024). Advances in identifying and managing emerging contaminants in aquatic ecosystems: Analytical approaches, toxicity assessment, transformation pathways, environmental fate, and remediation strategies. Environmental Pollution, 341, 122889. https://doi.org/10.1016/j.envpol.2023.122889
  2. Li, S., Wen, J., He, B., Wang, J., Hu, X., & Liu, J. (2020). Occurrence of caffeine in the freshwater environment: Implications for ecopharmacovigilance. Environmental Pollution, 263, 114371. https://doi.org/10.1016/j.envpol.2020.114371
  3. Beutel, M. W., Harmon, T. C., Novotny, T. E., Mock, J., Gilmore, M. E., Hart, S. C., Traina, S., Duttagupta, S., Brooks, A., Jerde, C. L., Hoh, E., Van De Werfhorst, L. C., Butsic, V., Wartenberg, A. C., & Holden, P. A. (2021). A Review of Environmental Pollution from the Use and Disposal of Cigarettes and Electronic Cigarettes: Contaminants, Sources, and Impacts. Sustainability, 13(23), 12994. https://doi.org/10.3390/su132312994
  4. Chen, Y., Wen, X., Wang, B., & Nie, P. (2017). Agricultural pollution and regulation: How to subsidize agriculture? Journal of Cleaner Production, 164, 258–264. https://doi.org/10.1016/j.jclepro.2017.06.216
  5. Sadeu, J. C., Hughes, C. L., Agarwal, S., & Foster, W. G. (2010). Alcohol, drugs, caffeine, tobacco, and environmental contaminant exposure: Reproductive health consequences and clinical implications. Critical Reviews in Toxicology, 40(7), 633–652. https://doi.org/10.3109/10408444.2010.493552
  6. Buerge, I. J., Poiger, T., Müller, M. D., & Buser, H.-R. (2003). Caffeine, an Anthropogenic Marker for Wastewater Contamination of Surface Waters. Environmental Science & Technology, 37(4), 691–700. https://doi.org/10.1021/es020125z
  7. Chen, Z., Pavelic, P., Dillon, P., & Naidu, R. (2002). Determination of caffeine as a tracer of sewage effluent in natural waters by on-line solid-phase extraction and liquid chromatography with diode-array detection. Water Research, 36(19), 4830–4838. https://doi.org/10.1016/S0043-1354(02)00221-X
  8. Seiler, R. L., Zaugg, S. D., Thomas, J. M., & Howcroft, D. L. (1999). Caffeine and Pharmaceuticals as Indicators of Waste Water Contamination in Wells. Ground Water, 37(3), 405–410. https://doi.org/10.1111/j.1745-6584.1999.tb01118.x
  9. Vandeponseele, A., Draye, M., Piot, C., & Chatel, G. (2021). Study of Influential Parameters of the Caffeine Extraction from Spent Coffee Grounds: From Brewing Coffee Method to the Waste Treatment Conditions. Clean Technologies, 3(2), 335–350. https://doi.org/10.3390/cleantechnol3020019
  10. Ebele, A. J., Oluseyi, T., Drage, D. S., Harrad, S., & Abou-Elwafa Abdallah, M. (2020). Occurrence, seasonal variation and human exposure to pharmaceuticals and personal care products in surface water, groundwater and drinking water in Lagos State, Nigeria. Emerging Contaminants, 6, 124–132. https://doi.org/10.1016/j.emcon.2020.02.004
  11. Popova, V., Gochev, V., Girova, T., Iliev, I., Ivanova, T., & Stoyanova, A. (2015). Extraction Products from Tobacco – Aroma and Bioactive Compounds and Activities. Current Bioactive Compounds, 11(1), 31–37. https://doi.org/10.2174/157340721101150804150016
  12. Ali Esmail Al-Snafi. (2022). Pharmacological and toxicological effects of Nicotiana tabacum. World Journal of Advanced Pharmaceutical and Medical Research, 3(1), 006–018. https://doi.org/10.53346/wjapmr.2022.3.1.0034
  13. Khan, S. A., Rahman, Md. H., Islam, S., & Ghosh, D. (2024). Toxicity Assessment of Local Tobacco Products Bidi and Gul of Bangladesh Using Brine Shrimp (Artemia salina) Lethality Assay. Journal of Microscopy and Ultrastructure. https://doi.org/10.4103/jmau.jmau_55_23
  14. Verovšek, T., Heath, D., & Heath, E. (2022). Occurrence, fate and determination of tobacco (nicotine) and alcohol (ethanol) residues in waste-and environmental waters. Trends in Environmental Analytical Chemistry, 34, e00164. https://doi.org/10.1016/j.teac.2022.e00164
  15. dePaula, J., & Farah, A. (2019). Caffeine Consumption through Coffee: Content in the Beverage, Metabolism, Health Benefits and Risks. Beverages, 5(2), 37. https://doi.org/10.3390/beverages5020037
  16. Hukkanen, J., Jacob, P., & Benowitz, N. L. (2005). Metabolism and Disposition Kinetics of Nicotine. Pharmacological Reviews, 57(1), 79–115. https://doi.org/10.1124/pr.57.1.3
  17. Nawrot, P., Jordan, S., Eastwood, J., Rotstein, J., Hugenholtz, A., & Feeley, M. (2003). Effects of caffeine on human health. Food Additives and Contaminants, 20(1), 1–30. https://doi.org/10.1080/0265203021000007840
  18. You, L., Nguyen, V. T., Pal, A., Chen, H., He, Y., Reinhard, M., & Gin, K. Y.-H. (2015). Investigation of pharmaceuticals, personal care products and endocrine disrupting chemicals in a tropical urban catchment and the influence of environmental factors. Science of The Total Environment, 536, 955–963. https://doi.org/10.1016/j.scitotenv.2015.06.041
  19. Martín-Pozo, L., De Alarcón-Gómez, B., Rodríguez-Gómez, R., García-Córcoles, M. T., Çipa, M., & Zafra-Gómez, A. (2019). Analytical methods for the determination of emerging contaminants in sewage sludge samples. A review. Talanta, 192, 508–533. https://doi.org/10.1016/j.talanta.2018.09.056
  20. Gonzalez-Rey, M., Tapie, N., Le Menach, K., Dévier, M.-H., Budzinski, H., & Bebianno, M. J. (2015). Occurrence of pharmaceutical compounds and pesticides in aquatic systems. Marine Pollution Bulletin, 96(1–2), 384–400. https://doi.org/10.1016/j.marpolbul.2015.04.029
  21. Mokh, S., El Khatib, M., Koubar, M., Daher, Z., & Al Iskandarani, M. (2017). Innovative SPE-LC-MS/MS technique for the assessment of 63 pharmaceuticals and the detection of antibiotic-resistant-bacteria: A case study natural water sources in Lebanon. Science of The Total Environment, 609, 830–841. https://doi.org/10.1016/j.scitotenv.2017.07.230
  22. Sidhu, J. P. S., Ahmed, W., Gernjak, W., Aryal, R., McCarthy, D., Palmer, A., Kolotelo, P., & Toze, S. (2013). Sewage pollution in urban stormwater runoff as evident from the widespread presence of multiple microbial and chemical source tracking markers. Science of The Total Environment, 463–464, 488–496. https://doi.org/10.1016/j.scitotenv.2013.06.020
  23. Del Río, H., Suárez, J., Puertas, J., & Ures, P. (2013). PPCPs wet weather mobilization in a combined sewer in NW Spain. Science of The Total Environment, 449, 189–198. https://doi.org/10.1016/j.scitotenv.2013.01.049
  24. Daneshvar, A., Aboulfadl, K., Viglino, L., Broséus, R., Sauvé, S., Madoux-Humery, A.-S., Weyhenmeyer, G. A., & Prévost, M. (2012). Evaluating pharmaceuticals and caffeine as indicators of fecal contamination in drinking water sources of the Greater Montreal region. Chemosphere, 88(1), 131–139. https://doi.org/10.1016/j.chemosphere.2012.03.016
  25. Seehaus, T., Sommer, C., Dethinne, T., & Malz, P. (2023). Mass changes of the northern Antarctic Peninsula Ice Sheet derived from repeat bi-static synthetic aperture radar acquisitions for the period 2013–2017. The Cryosphere, 17(11), 4629–4644. https://doi.org/10.5194/tc-17-4629-2023
  26. Rodríguez-Álvarez, T., Rodil, R., Rico, M., Cela, R., & Quintana, J. B. (2014). Assessment of Local Tobacco Consumption by Liquid Chromatography–Tandem Mass Spectrometry Sewage Analysis of Nicotine and Its Metabolites, Cotinine and trans-3′-Hydroxycotinine, after Enzymatic Deconjugation. Analytical Chemistry, 86(20), 10274–10281. https://doi.org/10.1021/ac503330c
  27. Chen, Z., Pavelic, P., Dillon, P., & Naidu, R. (2002). Determination of caffeine as a tracer of sewage effluent in natural waters by on-line solid-phase extraction and liquid chromatography with diode-array detection. Water Research, 36(19), 4830–4838. https://doi.org/10.1016/S0043-1354(02)00221-X
  28. Gómez, M. J., Gómez-Ramos, M. M., Malato, O., Mezcua, M., & Férnandez-Alba, A. R. (2010). Rapid automated screening, identification and quantification of organic micro-contaminants and their main transformation products in wastewater and river waters using liquid chromatography–quadrupole-time-of-flight mass spectrometry with an accurate-mass database. Journal of Chromatography A, 1217(45), 7038–7054. https://doi.org/10.1016/j.chroma.2010.08.070
  29. Verovšek, T., Heath, D., & Heath, E. (2022). Occurrence, fate and determination of tobacco (nicotine) and alcohol (ethanol) residues in waste-and environmental waters. Trends in Environmental Analytical Chemistry, 34, e00164. https://doi.org/10.1016/j.teac.2022.e00164
  30. Afonso-Olivares, C., Sosa-Ferrera, Z., & Santana-Rodríguez, J. J. (2017). Occurrence and environmental impact of pharmaceutical residues from conventional and natural wastewater treatment plants in Gran Canaria (Spain). Science of The Total Environment, 599–600, 934–943. https://doi.org/10.1016/j.scitotenv.2017.05.058
  31. Kosma, C. I., Lambropoulou, D. A., & Albanis, T. A. (2014). Investigation of PPCPs in wastewater treatment plants in Greece: Occurrence, removal and environmental risk assessment. Science of The Total Environment, 466–467, 421–438. https://doi.org/10.1016/j.scitotenv.2013.07.044
  32. Vystavna, Y., Frkova, Z., Marchand, L., Vergeles, Y., & Stolberg, F. (2017). Removal efficiency of pharmaceuticals in a full scale constructed wetland in East Ukraine. Ecological Engineering, 108, 50–58. https://doi.org/10.1016/j.ecoleng.2017.08.009
  33. Li, W.-L., Zhang, Z.-F., Ma, W.-L., Liu, L.-Y., Song, W.-W., & Li, Y.-F. (2018). An evaluation on the intraday dynamics, seasonal variations and removal of selected pharmaceuticals and personal care products from urban wastewater treatment plants. Science of The Total Environment, 640–641, 1139–1147. https://doi.org/10.1016/j.scitotenv.2018.05.362
  34. Dai, G., Wang, B., Huang, J., Dong, R., Deng, S., & Yu, G. (2015). Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China. Chemosphere, 119, 1033–1039. https://doi.org/10.1016/j.chemosphere.2014.08.056
  35. Archana, G., Dhodapkar, R., & Kumar, A. (2017). Ecotoxicological risk assessment and seasonal variation of some pharmaceuticals and personal care products in the sewage treatment plant and surface water bodies (lakes). Environmental Monitoring and Assessment, 189(9), 446. https://doi.org/10.1007/s10661-017-6148-3
  36. Abou-Elwafa Abdallah, M., Nguyen, K.-H., Ebele, A. J., Atia, N. N., Ali, H. R. H., & Harrad, S. (2019). A single run, rapid polarity switching method for determination of 30 pharmaceuticals and personal care products in waste water using Q-Exactive Orbitrap high resolution accurate mass spectrometry. Journal of Chromatography A, 1588, 68–76. https://doi.org/10.1016/j.chroma.2018.12.033
  37. Belay, A., Ture, K., Redi, M., & Asfaw, A. (2008). Measurement of caffeine in coffee beans with UV/vis spectrometer. Food Chemistry, 108(1), 310–315. https://doi.org/10.1016/j.foodchem.2007.10.024
  38. Kinney, C. A., Furlong, E. T., Werner, S. L., & Cahill, J. D. (2006). Presence and distribution of waste-water-derived pharmaceuticals in soil irrigated with reclaimed water. Environmental Toxicology and Chemistry, 25(2), 317–326. https://doi.org/10.1897/05-187R.1
  39. Buszka, P. M., Yeskis, D. J., Kolpin, D. W., Furlong, E. T., Zaugg, S. D., & Meyer, M. T. (2009). WasteIndicator and Pharmaceutical Compounds in Landfill-Leachate-Affected Ground Water near Elkhart, Indiana, 2000–2002. Bulletin of Environmental Contamination and Toxicology, 82(6), 653–659. https://doi.org/10.1007/s00128-009-9702-z
  40. Elsayad, R. M., Sharshir, S. W., Khalil, A., & Basha, A. M. (2024). Recent advancements in wastewater treatment via anaerobic fermentation process: A systematic review. Journal of Environmental Management, 366, 121724. https://doi.org/10.1016/j.jenvman.2024.121724
  41. Wang, J., Wang, K., Li, W., Wang, H., & Wang, Y. (2024). Enhancing bioelectrochemical processes in anaerobic membrane bioreactors for municipal wastewater treatment: A comprehensive review. Chemical Engineering Journal, 484, 149420. https://doi.org/10.1016/j.cej.2024.149420
  42. Dvořák, L., Gómez, M., Dolina, J., & Černín, A. (2016). Anaerobic membrane bioreactors – a mini review with emphasis on industrial wastewater treatment: Applications, limitations and perspectives. Desalination and Water Treatment, 57(41), 19062–19076. https://doi.org/10.1080/19443994.2015.1100879
  43. Jahanian, A., Ramirez, J., & O’Hara, I. (2024). Advancing precision fermentation: Minimizing power demand of industrial scale bioreactors through mechanistic modelling. Computers & Chemical Engineering, 188, 108755. https://doi.org/10.1016/j.compchemeng.2024.108755
  44. Rosi-Marshall, E. J., Snow, D., Bartelt-Hunt, S. L., Paspalof, A., & Tank, J. L. (2015). A review of ecological effects and environmental fate of illicit drugs in aquatic ecosystems. Journal of Hazardous Materials, 282, 18–25. https://doi.org/10.1016/j.jhazmat.2014.06.062
  45. Rodríguez, A., Rosal, R., Perdigón-Melón, J. A., Mezcua, M., Agüera, A., Hernando, M. D., Letón, P., Fernández-Alba, A. R., & García-Calvo, E. (2008). Ozone-Based Technologies in Water and Wastewater Treatment. In D. Barceló & M. Petrovic (Eds.), Emerging Contaminants from Industrial and Municipal Waste, Vol. 5S/2 (pp. 127–175). Springer Berlin Heidelberg. https://doi.org/10.1007/698_5_103
  46. Dong, C., Fang, W., Yi, Q., & Zhang, J. (2022). A comprehensive review on reactive oxygen species (ROS) in advanced oxidation processes (AOPs). Chemosphere, 308, 136205. https://doi.org/10.1016/j.chemosphere.2022.136205
  47. Pandis, P. K., Kalogirou, C., Kanellou, E., Vaitsis, C., Savvidou, M. G., Sourkouni, G., Zorpas, A. A., & Argirusis, C. (2022). Key Points of Advanced Oxidation Processes (AOPs) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A Mini Review. ChemEngineering, 6(1), 8. https://doi.org/10.3390/chemengineering6010008
  48. Ismail, G. A., & Sakai, H. (2022). Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal. Chemosphere, 291, 132906. https://doi.org/10.1016/j.chemosphere.2021.132906
  49. Mahbub, P., & Duke, M. (2023). Scalability of advanced oxidation processes (AOPs) in industrial applications: A review. Journal of Environmental Management, 345, 118861. https://doi.org/10.1016/j.jenvman.2023.118861
  50. Jovančić, P., & Radetić, M. (2008). Advanced Sorbent Materials for Treatment of Wastewaters. In D. Barceló & M. Petrovic (Eds.), Emerging Contaminants from Industrial and Municipal Waste: Vol. 5S/2 (pp. 239–264). Springer Berlin Heidelberg. https://doi.org/10.1007/698_5_097
  51. Benotti, M. J., & Brownawell, B. J. (2009). Microbial degradation of pharmaceuticals in estuarine and coastal seawater. Environmental Pollution, 157(3), 994–1002. https://doi.org/10.1016/j.envpol.2008.10.009
  52. Bartelt-Hunt, S. L., Snow, D. D., Damon, T., Shockley, J., & Hoagland, K. (2009). The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska. Environmental Pollution, 157(3), 786–791. https://doi.org/10.1016/j.envpol.2008.11.025
  53. Alvarez, D. A., Maruya, K. A., Dodder, N. G., Lao, W., Furlong, E. T., & Smalling, K. L. (2014). Occurrence of contaminants of emerging concern along the California coast (2009–10) using passive sampling devices. Marine Pollution Bulletin, 81(2), 347–354. https://doi.org/10.1016/j.marpolbul.2013.04.022
  54. Martínez Bueno, M. J., Uclés, S., Hernando, M. D., & Fernández-Alba, A. R. (2011). Development of a solvent-free method for the simultaneous identification/quantification of drugs of abuse and their metabolites in environmental water by LC–MS/MS. Talanta, 85(1), 157–166. https://doi.org/10.1016/j.talanta.2011.03.051
  55. Barnes, K. K., Christenson, S. C., Kolpin, D. W., Focazio, M. J., Furlong, E. T., Zaugg, S. D., Meyer, M. T., & Barber, L. B. (2004). Pharmaceuticals and Other Organic Waste Water Contaminants Within a Leachate Plume Downgradient of a Municipal Landfill. Groundwater Monitoring & Remediation, 24(2), 119–126. https://doi.org/10.1111/j.1745-6592.2004.tb00720.x
  56. Chiaia, A. C., Banta-Green, C., & Field, J. (2008). Eliminating Solid Phase Extraction with Large-Volume Injection LC/MS/MS: Analysis of Illicit and Legal Drugs and Human Urine Indicators in US Wastewaters. Environmental Science & Technology, 42(23), 8841–8848. https://doi.org/10.1021/es802309v
  57. Ibrahim, I., Togola, A., & Gonzalez, C. (2013). Polar organic chemical integrative sampler (POCIS) uptake rates for 17 polar pesticides and degradation products: Laboratory calibration. Environmental Science and Pollution Research, 20(6), 3679–3687. https://doi.org/10.1007/s11356-012-1284-3
  58. Mastroianni, N., López-García, E., Postigo, C., Barceló, D., & López De Alda, M. (2017). Five-year monitoring of 19 illicit and legal substances of abuse at the inlet of a wastewater treatment plant in Barcelona (NE Spain) and estimation of drug consumption patterns and trends. Science of The Total Environment, 609, 916–926. https://doi.org/10.1016/j.scitotenv.2017.07.126
  59. Koller, D., Zubiaur, P., Saiz-Rodríguez, M., Abad-Santos, F., & Wojnicz, A. (2019). Simultaneous determination of six antipsychotics, two of their metabolites and caffeine in human plasma by LC-MS/MS using a phospholipid-removal microelution-solid phase extraction method for sample preparation. Talanta, 198, 159–168. https://doi.org/10.1016/j.talanta.2019.01.112
  60. Haggard, B. E., Galloway, J. M., Green, W. R., & Meyer, M. T. (2006). Pharmaceuticals and Other Organic Chemicals in Selected North‐Central and Northwestern Arkansas Streams. Journal of Environmental Quality, 35(4), 1078–1087. https://doi.org/10.2134/jeq2005.0248dup
  61. Ali, A., Zhang, N., & Santos, R. M. (2023). Mineral Characterization Using Scanning Electron Microscopy (SEM): A Review of the Fundamentals, Advancements, and Research Directions. Applied Sciences, 13(23), 12600. https://doi.org/10.3390/app132312600
  62. Zhao, J., Yu, X., Shentu, X., & Li, D. (2024). The application and development of electron microscopy for three-dimensional reconstruction in life science: A review. Cell and Tissue Research, 396(1), 1–18. https://doi.org/10.1007/s00441-024-03878-7
  63. Shirsath, S. R., Sonawane, S. H., & Gogate, P. R. (2012). Intensification of extraction of natural products using ultrasonic irradiations – A review of current status. Chemical Engineering and Processing: Process Intensification, 53, 10–23. https://doi.org/10.1016/j.cep.2012.01.003
  64. Sökmen, M., Demir, E., & Alomar, S. Y. (2018). Optimization of sequential supercritical fluid extraction (SFE) of caffeine and catechins from green tea. The Journal of Supercritical Fluids, 133, 171–176. https://doi.org/10.1016/j.supflu.2017.09.027
  65. Badawy, M. E. I., El-Nouby, M. A. M., Kimani, P. K., Lim, L. W., & Rabea, E. I. (2022). A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. Analytical Sciences, 38(12), 1457–1487. https://doi.org/10.1007/s44211-022-00190-8
  66. Wan, Q., Liu, H., Deng, Z., Bu, J., Li, T., Yang, Y., & Zhong, S. (2021). A critical review of molecularly imprinted solid phase extraction technology. Journal of Polymer Research, 28(10), 401. https://doi.org/10.1007/s10965-021-02744-2
  67. Zou, X., Bk, A., Abu-Izneid, T., Aziz, A., Devnath, P., Rauf, A., Mitra, S., Emran, T. B., Mujawah, A. A. H., Lorenzo, J. M., Mubarak, M. S., Wilairatana, P., & Suleria, H. A. R. (2021). Current advances of functional phytochemicals in Nicotiana plant and related potential value of tobacco processing waste: A review. Biomedicine & Pharmacotherapy, 143, 112191. https://doi.org/10.1016/j.biopha.2021.112191
  68. Chen, Y., Jimmy Yu, Q., Li, X., Luo, Y., & Liu, H. (2007). Extraction and HPLC Characterization of Chlorogenic Acid from Tobacco Residuals. Separation Science and Technology, 42(15), 3481–3492. https://doi.org/10.1080/01496390701626677
  69. Song (Sherry), S., & Ashley, D. L. (1998). Sample purification for the analysis of caffeine in tobacco by gas chromatography–mass spectrometry. Journal of Chromatography A, 814(1–2), 171–180. https://doi.org/10.1016/S0021-9673(98)00384-7
  70. Machado, K. C., Grassi, M. T., Vidal, C., Pescara, I. C., Jardim, W. F., Fernandes, A. N., Sodré, F. F., Almeida, F. V., Santana, J. S., Canela, M. C., Nunes, C. R. O., Bichinho, K. M., & Severo, F. J. R. (2016). A preliminary nationwide survey of the presence of emerging contaminants in drinking and source waters in Brazil. Science of The Total Environment, 572, 138–146. https://doi.org/10.1016/j.scitotenv.2016.07.210
  71. Martínez Bueno, M. J., Agüera, A., Gómez, M. J., Hernando, M. D., García-Reyes, J. F., & Fernández-Alba, A. R. (2007). Application of Liquid Chromatography/Quadrupole-Linear Ion Trap Mass Spectrometry and Time-of-Flight Mass Spectrometry to the Determination of Pharmaceuticals and Related Contaminants in Wastewater. Analytical Chemistry, 79(24), 9372–9384. https://doi.org/10.1021/ac0715672
  72. Robles-Molina, J., Gilbert-López, B., García-Reyes, J. F., & Molina-Díaz, A. (2014). Monitoring of selected priority and emerging contaminants in the Guadalquivir River and other related surface waters in the province of Jaén, South East Spain. Science of The Total Environment, 479–480, 247–257. https://doi.org/10.1016/j.scitotenv.2014.01.121
  73. Metcalfe, C. D., Miao, X.-S., Koenig, B. G., & Struger, J. (2003). Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada. Environmental Toxicology and Chemistry, 22(12), 2881. https://doi.org/10.1897/02-627
  74. Godfrey, E., Woessner, W. W., & Benotti, M. J. (2007). Pharmaceuticals in On-Site Sewage Effluent and Ground Water, Western Montana. Ground Water, 45(3), 263–271. https://doi.org/10.1111/j.1745-6584.2006.00288.x
  75. Zhou, H.-Y., & Liu, C.-Z. (2006). Microwave-assisted extraction of solanesol from tobacco leaves. Journal of Chromatography A, 1129(1), 135–139. https://doi.org/10.1016/j.chroma.2006.07.083
  76. Montesdeoca-Esponda, S., Palacios-Díaz, M. D. P., Estévez, E., Sosa-Ferrera, Z., Santana-Rodríguez, J. J., & Cabrera, M. D. C. (2021). Occurrence of Pharmaceutical Compounds in Groundwater from the Gran Canaria Island (Spain). Water, 13(3), 262. https://doi.org/10.3390/w13030262
  77. Chen, Q., Zhao, J., Huang, X., Zhang, H., & Liu, M. (2006). Simultaneous determination of total polyphenols and caffeine contents of green tea by nearinfrared reflectance spectroscopy. Microchemical Journal, 83(1), 42–47. https://doi.org/10.1016/j.microc.2006.01.023
  78. He, Y., Qin, H., Wen, J., Cao, W., Yan, Y., Sun, Y., Yuan, P., Sun, B., Fan, S., Lu, W., & Li, C. (2023). Characterization of Key Compounds of Organic Acids and Aroma Volatiles in Fruits of Different Actinidia argute Resources Based on High-Performance Liquid Chromatography (HPLC) and Headspace Gas Chromatography–Ion Mobility Spectrometry (HS-GC-IMS). Foods, 12(19), 3615. https://doi.org/10.3390/foods12193615
  79. Alghamdi, B. A., Alshumrani, E. S., Saeed, M. S. B., Rawas, G. M., Alharthi, N. T., Baeshen, M. N., Helmi, N. M., Alam, M. Z., & Suhail, M. (2020). Analysis of sugar composition and pesticides using HPLC and GC–MS techniques in honey samples collected from Saudi Arabian markets. Saudi Journal of Biological Sciences, 27(12), 3720–3726. https://doi.org/10.1016/j.sjbs.2020.08.018
  80. Nguyen, H. T., Thai, P. K., Kaserzon, S. L., O’Brien, J. W., Eaglesham, G., & Mueller, J. F. (2018). Assessment of drugs and personal care products biomarkers in the influent and effluent of two wastewater treatment plants in Ho Chi Minh City, Vietnam. Science of The Total Environment, 631–632, 469–475. https://doi.org/10.1016/j.scitotenv.2018.02.309
  81. Park, S., & Lee, W. (2018). Removal of selected pharmaceuticals and personal care products in reclaimed water during simulated managed aquifer recharge. Science of The Total Environment, 640–641, 671–677. https://doi.org/10.1016/j.scitotenv.2018.05.221
  82. Petrie, B., Rood, S., Smith, B. D., Proctor, K., Youdan, J., Barden, R., & Kasprzyk-Hordern, B. (2018). Biotic phase micropollutant distribution in horizontal sub-surface flow constructed wetlands. Science of The Total Environment, 630, 648–657. https://doi.org/10.1016/j.scitotenv.2018.02.242
  83. El Marghani, A., Pradhan, A., Seyoum, A., Khalaf, H., Ros, T., Forsberg, L.-H., Nermark, T., Osterman, L., Wiklund, U., Ivarsson, P., Jass, J., & Olsson, P.-E. (2014). Contribution of pharmaceuticals, fecal bacteria and endotoxin to the inflammatory responses to inland waters. Science of The Total Environment, 488–489, 228–235. https://doi.org/10.1016/j.scitotenv.2014.04.090
  84. Baalbaki, Z., Sultana, T., Metcalfe, C., & Yargeau, V. (2017). Estimating removals of contaminants of emerging concern from wastewater treatment plants: The critical role of wastewater hydrodynamics. Chemosphere, 178, 439–448. https://doi.org/10.1016/j.chemosphere.2017.03.070
  85. Subedi, B., Codru, N., Dziewulski, D. M., Wilson, L. R., Xue, J., Yun, S., Braun-Howland, E., Minihane, C., & Kannan, K. (2015). A pilot study on the assessment of trace organic contaminants including pharmaceuticals and personal care products from on-site wastewater treatment systems along Skaneateles Lake in New York State, USA. Water Research, 72, 28–39. https://doi.org/10.1016/j.watres.2014.10.049
  86. Sun, Q., Li, M., Ma, C., Chen, X., Xie, X., & Yu, C.-P. (2016). Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen, China. Environmental Pollution, 208, 371–381. https://doi.org/10.1016/j.envpol.2015.10.003
  87. Papageorgiou, M., Kosma, C., & Lambropoulou, D. (2016). Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece. Science of The Total Environment, 543, 547–569. https://doi.org/10.1016/j.scitotenv.2015.11.047
  88. Baker, D. R., & Kasprzyk-Hordern, B. (2013). Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: New developments. Science of The Total Environment, 454–455, 442–456. https://doi.org/10.1016/j.scitotenv.2013.03.043
  89. Li, S.-W., & Lin, A. Y.-C. (2015). Increased acute toxicity to fish caused by pharmaceuticals in hospital effluents in a pharmaceutical mixture and after solar irradiation. Chemosphere, 139, 190–196. https://doi.org/10.1016/j.chemosphere.2015.06.010
  90. Mohapatra, S., Huang, C.-H., Mukherji, S., & Padhye, L. P. (2016). Occurrence and fate of pharmaceuticals in WWTPs in India and comparison with a similar study in the United States. Chemosphere, 159, 526–535. https://doi.org/10.1016/j.chemosphere.2016.06.047
  91. He, K., Echigo, S., Asada, Y., & Itoh, S. (2018). Determination of Caffeine and Its Metabolites in Wastewater Treatment Plants Using Solid-Phase Extraction and Liquid Chromatography–Tandem Mass Spectrometry. Analytical Sciences, 34(3), 349–353. https://doi.org/10.2116/analsci.34.349
  92. Nahar, L., Onder, A., & Sarker, S. D. (2020). A review on the recent advances in HPLC, UHPLC and UPLC analyses of naturally occurring cannabinoids (2010–2019). Phytochemical Analysis, 31(4), 413–457. https://doi.org/10.1002/pca.2906
  93. Shen, Y., Zhang, N., Prinyawiwatkul, W., & Xu, Z. (2021). A rapid LC-MS/MS method for simultaneous determination of nicotine and its key derivatives including hydroxylation isomers. International Journal of Mass Spectrometry, 468, 116642. https://doi.org/10.1016/j.ijms.2021.116642
  94. Zhang, J., Xie, S., & Yuan, L. (2022). Recent progress in the development of chiral stationary phases for high‐performance liquid chromatography. Journal of Separation Science, 45(1), 51–77. https://doi.org/10.1002/jssc.202100593
  95. Abdu Hussen, A. (2022). High-Performance Liquid Chromatography (HPLC): A review. Annals of Advances in Chemistry, 6(1), 010–020. https://doi.org/10.29328/journal.aac.1001026
  96. Venditti, C., Biagioni, V., Adrover, A., & Cerbelli, S. (2022). Impact of transversal vortices on the performance of open-tubular liquid chromatography. Journal of Chromatography A, 1685, 463623. https://doi.org/10.1016/j.chroma.2022.463623
DOI: https://doi.org/10.2478/acee-2025-0027 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 171 - 190
Submitted on: May 15, 2025
|
Accepted on: Jun 24, 2025
|
Published on: Jul 3, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Bhautik DAVE, Ewa ŁOBOS-MOYSA, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.