References
- Mofijur, M., Hasan, M. M., Ahmed, S. F., Djavanroodi, F., Fattah, I. M. R., Silitonga, A. S., Kalam, M. A., Zhou, J. L., & Khan, T. M. Y. (2024). Advances in identifying and managing emerging contaminants in aquatic ecosystems: Analytical approaches, toxicity assessment, transformation pathways, environmental fate, and remediation strategies. Environmental Pollution, 341, 122889. https://doi.org/10.1016/j.envpol.2023.122889
- Li, S., Wen, J., He, B., Wang, J., Hu, X., & Liu, J. (2020). Occurrence of caffeine in the freshwater environment: Implications for ecopharmacovigilance. Environmental Pollution, 263, 114371. https://doi.org/10.1016/j.envpol.2020.114371
- Beutel, M. W., Harmon, T. C., Novotny, T. E., Mock, J., Gilmore, M. E., Hart, S. C., Traina, S., Duttagupta, S., Brooks, A., Jerde, C. L., Hoh, E., Van De Werfhorst, L. C., Butsic, V., Wartenberg, A. C., & Holden, P. A. (2021). A Review of Environmental Pollution from the Use and Disposal of Cigarettes and Electronic Cigarettes: Contaminants, Sources, and Impacts. Sustainability, 13(23), 12994. https://doi.org/10.3390/su132312994
- Chen, Y., Wen, X., Wang, B., & Nie, P. (2017). Agricultural pollution and regulation: How to subsidize agriculture? Journal of Cleaner Production, 164, 258–264. https://doi.org/10.1016/j.jclepro.2017.06.216
- Sadeu, J. C., Hughes, C. L., Agarwal, S., & Foster, W. G. (2010). Alcohol, drugs, caffeine, tobacco, and environmental contaminant exposure: Reproductive health consequences and clinical implications. Critical Reviews in Toxicology, 40(7), 633–652. https://doi.org/10.3109/10408444.2010.493552
- Buerge, I. J., Poiger, T., Müller, M. D., & Buser, H.-R. (2003). Caffeine, an Anthropogenic Marker for Wastewater Contamination of Surface Waters. Environmental Science & Technology, 37(4), 691–700. https://doi.org/10.1021/es020125z
- Chen, Z., Pavelic, P., Dillon, P., & Naidu, R. (2002). Determination of caffeine as a tracer of sewage effluent in natural waters by on-line solid-phase extraction and liquid chromatography with diode-array detection. Water Research, 36(19), 4830–4838. https://doi.org/10.1016/S0043-1354(02)00221-X
- Seiler, R. L., Zaugg, S. D., Thomas, J. M., & Howcroft, D. L. (1999). Caffeine and Pharmaceuticals as Indicators of Waste Water Contamination in Wells. Ground Water, 37(3), 405–410. https://doi.org/10.1111/j.1745-6584.1999.tb01118.x
- Vandeponseele, A., Draye, M., Piot, C., & Chatel, G. (2021). Study of Influential Parameters of the Caffeine Extraction from Spent Coffee Grounds: From Brewing Coffee Method to the Waste Treatment Conditions. Clean Technologies, 3(2), 335–350. https://doi.org/10.3390/cleantechnol3020019
- Ebele, A. J., Oluseyi, T., Drage, D. S., Harrad, S., & Abou-Elwafa Abdallah, M. (2020). Occurrence, seasonal variation and human exposure to pharmaceuticals and personal care products in surface water, groundwater and drinking water in Lagos State, Nigeria. Emerging Contaminants, 6, 124–132. https://doi.org/10.1016/j.emcon.2020.02.004
- Popova, V., Gochev, V., Girova, T., Iliev, I., Ivanova, T., & Stoyanova, A. (2015). Extraction Products from Tobacco – Aroma and Bioactive Compounds and Activities. Current Bioactive Compounds, 11(1), 31–37. https://doi.org/10.2174/157340721101150804150016
- Ali Esmail Al-Snafi. (2022). Pharmacological and toxicological effects of Nicotiana tabacum. World Journal of Advanced Pharmaceutical and Medical Research, 3(1), 006–018. https://doi.org/10.53346/wjapmr.2022.3.1.0034
- Khan, S. A., Rahman, Md. H., Islam, S., & Ghosh, D. (2024). Toxicity Assessment of Local Tobacco Products Bidi and Gul of Bangladesh Using Brine Shrimp (Artemia salina) Lethality Assay. Journal of Microscopy and Ultrastructure. https://doi.org/10.4103/jmau.jmau_55_23
- Verovšek, T., Heath, D., & Heath, E. (2022). Occurrence, fate and determination of tobacco (nicotine) and alcohol (ethanol) residues in waste-and environmental waters. Trends in Environmental Analytical Chemistry, 34, e00164. https://doi.org/10.1016/j.teac.2022.e00164
- dePaula, J., & Farah, A. (2019). Caffeine Consumption through Coffee: Content in the Beverage, Metabolism, Health Benefits and Risks. Beverages, 5(2), 37. https://doi.org/10.3390/beverages5020037
- Hukkanen, J., Jacob, P., & Benowitz, N. L. (2005). Metabolism and Disposition Kinetics of Nicotine. Pharmacological Reviews, 57(1), 79–115. https://doi.org/10.1124/pr.57.1.3
- Nawrot, P., Jordan, S., Eastwood, J., Rotstein, J., Hugenholtz, A., & Feeley, M. (2003). Effects of caffeine on human health. Food Additives and Contaminants, 20(1), 1–30. https://doi.org/10.1080/0265203021000007840
- You, L., Nguyen, V. T., Pal, A., Chen, H., He, Y., Reinhard, M., & Gin, K. Y.-H. (2015). Investigation of pharmaceuticals, personal care products and endocrine disrupting chemicals in a tropical urban catchment and the influence of environmental factors. Science of The Total Environment, 536, 955–963. https://doi.org/10.1016/j.scitotenv.2015.06.041
- Martín-Pozo, L., De Alarcón-Gómez, B., Rodríguez-Gómez, R., García-Córcoles, M. T., Çipa, M., & Zafra-Gómez, A. (2019). Analytical methods for the determination of emerging contaminants in sewage sludge samples. A review. Talanta, 192, 508–533. https://doi.org/10.1016/j.talanta.2018.09.056
- Gonzalez-Rey, M., Tapie, N., Le Menach, K., Dévier, M.-H., Budzinski, H., & Bebianno, M. J. (2015). Occurrence of pharmaceutical compounds and pesticides in aquatic systems. Marine Pollution Bulletin, 96(1–2), 384–400. https://doi.org/10.1016/j.marpolbul.2015.04.029
- Mokh, S., El Khatib, M., Koubar, M., Daher, Z., & Al Iskandarani, M. (2017). Innovative SPE-LC-MS/MS technique for the assessment of 63 pharmaceuticals and the detection of antibiotic-resistant-bacteria: A case study natural water sources in Lebanon. Science of The Total Environment, 609, 830–841. https://doi.org/10.1016/j.scitotenv.2017.07.230
- Sidhu, J. P. S., Ahmed, W., Gernjak, W., Aryal, R., McCarthy, D., Palmer, A., Kolotelo, P., & Toze, S. (2013). Sewage pollution in urban stormwater runoff as evident from the widespread presence of multiple microbial and chemical source tracking markers. Science of The Total Environment, 463–464, 488–496. https://doi.org/10.1016/j.scitotenv.2013.06.020
- Del Río, H., Suárez, J., Puertas, J., & Ures, P. (2013). PPCPs wet weather mobilization in a combined sewer in NW Spain. Science of The Total Environment, 449, 189–198. https://doi.org/10.1016/j.scitotenv.2013.01.049
- Daneshvar, A., Aboulfadl, K., Viglino, L., Broséus, R., Sauvé, S., Madoux-Humery, A.-S., Weyhenmeyer, G. A., & Prévost, M. (2012). Evaluating pharmaceuticals and caffeine as indicators of fecal contamination in drinking water sources of the Greater Montreal region. Chemosphere, 88(1), 131–139. https://doi.org/10.1016/j.chemosphere.2012.03.016
- Seehaus, T., Sommer, C., Dethinne, T., & Malz, P. (2023). Mass changes of the northern Antarctic Peninsula Ice Sheet derived from repeat bi-static synthetic aperture radar acquisitions for the period 2013–2017. The Cryosphere, 17(11), 4629–4644. https://doi.org/10.5194/tc-17-4629-2023
- Rodríguez-Álvarez, T., Rodil, R., Rico, M., Cela, R., & Quintana, J. B. (2014). Assessment of Local Tobacco Consumption by Liquid Chromatography–Tandem Mass Spectrometry Sewage Analysis of Nicotine and Its Metabolites, Cotinine and trans-3′-Hydroxycotinine, after Enzymatic Deconjugation. Analytical Chemistry, 86(20), 10274–10281. https://doi.org/10.1021/ac503330c
- Chen, Z., Pavelic, P., Dillon, P., & Naidu, R. (2002). Determination of caffeine as a tracer of sewage effluent in natural waters by on-line solid-phase extraction and liquid chromatography with diode-array detection. Water Research, 36(19), 4830–4838. https://doi.org/10.1016/S0043-1354(02)00221-X
- Gómez, M. J., Gómez-Ramos, M. M., Malato, O., Mezcua, M., & Férnandez-Alba, A. R. (2010). Rapid automated screening, identification and quantification of organic micro-contaminants and their main transformation products in wastewater and river waters using liquid chromatography–quadrupole-time-of-flight mass spectrometry with an accurate-mass database. Journal of Chromatography A, 1217(45), 7038–7054. https://doi.org/10.1016/j.chroma.2010.08.070
- Verovšek, T., Heath, D., & Heath, E. (2022). Occurrence, fate and determination of tobacco (nicotine) and alcohol (ethanol) residues in waste-and environmental waters. Trends in Environmental Analytical Chemistry, 34, e00164. https://doi.org/10.1016/j.teac.2022.e00164
- Afonso-Olivares, C., Sosa-Ferrera, Z., & Santana-Rodríguez, J. J. (2017). Occurrence and environmental impact of pharmaceutical residues from conventional and natural wastewater treatment plants in Gran Canaria (Spain). Science of The Total Environment, 599–600, 934–943. https://doi.org/10.1016/j.scitotenv.2017.05.058
- Kosma, C. I., Lambropoulou, D. A., & Albanis, T. A. (2014). Investigation of PPCPs in wastewater treatment plants in Greece: Occurrence, removal and environmental risk assessment. Science of The Total Environment, 466–467, 421–438. https://doi.org/10.1016/j.scitotenv.2013.07.044
- Vystavna, Y., Frkova, Z., Marchand, L., Vergeles, Y., & Stolberg, F. (2017). Removal efficiency of pharmaceuticals in a full scale constructed wetland in East Ukraine. Ecological Engineering, 108, 50–58. https://doi.org/10.1016/j.ecoleng.2017.08.009
- Li, W.-L., Zhang, Z.-F., Ma, W.-L., Liu, L.-Y., Song, W.-W., & Li, Y.-F. (2018). An evaluation on the intraday dynamics, seasonal variations and removal of selected pharmaceuticals and personal care products from urban wastewater treatment plants. Science of The Total Environment, 640–641, 1139–1147. https://doi.org/10.1016/j.scitotenv.2018.05.362
- Dai, G., Wang, B., Huang, J., Dong, R., Deng, S., & Yu, G. (2015). Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China. Chemosphere, 119, 1033–1039. https://doi.org/10.1016/j.chemosphere.2014.08.056
- Archana, G., Dhodapkar, R., & Kumar, A. (2017). Ecotoxicological risk assessment and seasonal variation of some pharmaceuticals and personal care products in the sewage treatment plant and surface water bodies (lakes). Environmental Monitoring and Assessment, 189(9), 446. https://doi.org/10.1007/s10661-017-6148-3
- Abou-Elwafa Abdallah, M., Nguyen, K.-H., Ebele, A. J., Atia, N. N., Ali, H. R. H., & Harrad, S. (2019). A single run, rapid polarity switching method for determination of 30 pharmaceuticals and personal care products in waste water using Q-Exactive Orbitrap high resolution accurate mass spectrometry. Journal of Chromatography A, 1588, 68–76. https://doi.org/10.1016/j.chroma.2018.12.033
- Belay, A., Ture, K., Redi, M., & Asfaw, A. (2008). Measurement of caffeine in coffee beans with UV/vis spectrometer. Food Chemistry, 108(1), 310–315. https://doi.org/10.1016/j.foodchem.2007.10.024
- Kinney, C. A., Furlong, E. T., Werner, S. L., & Cahill, J. D. (2006). Presence and distribution of waste-water-derived pharmaceuticals in soil irrigated with reclaimed water. Environmental Toxicology and Chemistry, 25(2), 317–326. https://doi.org/10.1897/05-187R.1
- Buszka, P. M., Yeskis, D. J., Kolpin, D. W., Furlong, E. T., Zaugg, S. D., & Meyer, M. T. (2009). WasteIndicator and Pharmaceutical Compounds in Landfill-Leachate-Affected Ground Water near Elkhart, Indiana, 2000–2002. Bulletin of Environmental Contamination and Toxicology, 82(6), 653–659. https://doi.org/10.1007/s00128-009-9702-z
- Elsayad, R. M., Sharshir, S. W., Khalil, A., & Basha, A. M. (2024). Recent advancements in wastewater treatment via anaerobic fermentation process: A systematic review. Journal of Environmental Management, 366, 121724. https://doi.org/10.1016/j.jenvman.2024.121724
- Wang, J., Wang, K., Li, W., Wang, H., & Wang, Y. (2024). Enhancing bioelectrochemical processes in anaerobic membrane bioreactors for municipal wastewater treatment: A comprehensive review. Chemical Engineering Journal, 484, 149420. https://doi.org/10.1016/j.cej.2024.149420
- Dvořák, L., Gómez, M., Dolina, J., & Černín, A. (2016). Anaerobic membrane bioreactors – a mini review with emphasis on industrial wastewater treatment: Applications, limitations and perspectives. Desalination and Water Treatment, 57(41), 19062–19076. https://doi.org/10.1080/19443994.2015.1100879
- Jahanian, A., Ramirez, J., & O’Hara, I. (2024). Advancing precision fermentation: Minimizing power demand of industrial scale bioreactors through mechanistic modelling. Computers & Chemical Engineering, 188, 108755. https://doi.org/10.1016/j.compchemeng.2024.108755
- Rosi-Marshall, E. J., Snow, D., Bartelt-Hunt, S. L., Paspalof, A., & Tank, J. L. (2015). A review of ecological effects and environmental fate of illicit drugs in aquatic ecosystems. Journal of Hazardous Materials, 282, 18–25. https://doi.org/10.1016/j.jhazmat.2014.06.062
- Rodríguez, A., Rosal, R., Perdigón-Melón, J. A., Mezcua, M., Agüera, A., Hernando, M. D., Letón, P., Fernández-Alba, A. R., & García-Calvo, E. (2008). Ozone-Based Technologies in Water and Wastewater Treatment. In D. Barceló & M. Petrovic (Eds.), Emerging Contaminants from Industrial and Municipal Waste, Vol. 5S/2 (pp. 127–175). Springer Berlin Heidelberg. https://doi.org/10.1007/698_5_103
- Dong, C., Fang, W., Yi, Q., & Zhang, J. (2022). A comprehensive review on reactive oxygen species (ROS) in advanced oxidation processes (AOPs). Chemosphere, 308, 136205. https://doi.org/10.1016/j.chemosphere.2022.136205
- Pandis, P. K., Kalogirou, C., Kanellou, E., Vaitsis, C., Savvidou, M. G., Sourkouni, G., Zorpas, A. A., & Argirusis, C. (2022). Key Points of Advanced Oxidation Processes (AOPs) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A Mini Review. ChemEngineering, 6(1), 8. https://doi.org/10.3390/chemengineering6010008
- Ismail, G. A., & Sakai, H. (2022). Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal. Chemosphere, 291, 132906. https://doi.org/10.1016/j.chemosphere.2021.132906
- Mahbub, P., & Duke, M. (2023). Scalability of advanced oxidation processes (AOPs) in industrial applications: A review. Journal of Environmental Management, 345, 118861. https://doi.org/10.1016/j.jenvman.2023.118861
- Jovančić, P., & Radetić, M. (2008). Advanced Sorbent Materials for Treatment of Wastewaters. In D. Barceló & M. Petrovic (Eds.), Emerging Contaminants from Industrial and Municipal Waste: Vol. 5S/2 (pp. 239–264). Springer Berlin Heidelberg. https://doi.org/10.1007/698_5_097
- Benotti, M. J., & Brownawell, B. J. (2009). Microbial degradation of pharmaceuticals in estuarine and coastal seawater. Environmental Pollution, 157(3), 994–1002. https://doi.org/10.1016/j.envpol.2008.10.009
- Bartelt-Hunt, S. L., Snow, D. D., Damon, T., Shockley, J., & Hoagland, K. (2009). The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska. Environmental Pollution, 157(3), 786–791. https://doi.org/10.1016/j.envpol.2008.11.025
- Alvarez, D. A., Maruya, K. A., Dodder, N. G., Lao, W., Furlong, E. T., & Smalling, K. L. (2014). Occurrence of contaminants of emerging concern along the California coast (2009–10) using passive sampling devices. Marine Pollution Bulletin, 81(2), 347–354. https://doi.org/10.1016/j.marpolbul.2013.04.022
- Martínez Bueno, M. J., Uclés, S., Hernando, M. D., & Fernández-Alba, A. R. (2011). Development of a solvent-free method for the simultaneous identification/quantification of drugs of abuse and their metabolites in environmental water by LC–MS/MS. Talanta, 85(1), 157–166. https://doi.org/10.1016/j.talanta.2011.03.051
- Barnes, K. K., Christenson, S. C., Kolpin, D. W., Focazio, M. J., Furlong, E. T., Zaugg, S. D., Meyer, M. T., & Barber, L. B. (2004). Pharmaceuticals and Other Organic Waste Water Contaminants Within a Leachate Plume Downgradient of a Municipal Landfill. Groundwater Monitoring & Remediation, 24(2), 119–126. https://doi.org/10.1111/j.1745-6592.2004.tb00720.x
- Chiaia, A. C., Banta-Green, C., & Field, J. (2008). Eliminating Solid Phase Extraction with Large-Volume Injection LC/MS/MS: Analysis of Illicit and Legal Drugs and Human Urine Indicators in US Wastewaters. Environmental Science & Technology, 42(23), 8841–8848. https://doi.org/10.1021/es802309v
- Ibrahim, I., Togola, A., & Gonzalez, C. (2013). Polar organic chemical integrative sampler (POCIS) uptake rates for 17 polar pesticides and degradation products: Laboratory calibration. Environmental Science and Pollution Research, 20(6), 3679–3687. https://doi.org/10.1007/s11356-012-1284-3
- Mastroianni, N., López-García, E., Postigo, C., Barceló, D., & López De Alda, M. (2017). Five-year monitoring of 19 illicit and legal substances of abuse at the inlet of a wastewater treatment plant in Barcelona (NE Spain) and estimation of drug consumption patterns and trends. Science of The Total Environment, 609, 916–926. https://doi.org/10.1016/j.scitotenv.2017.07.126
- Koller, D., Zubiaur, P., Saiz-Rodríguez, M., Abad-Santos, F., & Wojnicz, A. (2019). Simultaneous determination of six antipsychotics, two of their metabolites and caffeine in human plasma by LC-MS/MS using a phospholipid-removal microelution-solid phase extraction method for sample preparation. Talanta, 198, 159–168. https://doi.org/10.1016/j.talanta.2019.01.112
- Haggard, B. E., Galloway, J. M., Green, W. R., & Meyer, M. T. (2006). Pharmaceuticals and Other Organic Chemicals in Selected North‐Central and Northwestern Arkansas Streams. Journal of Environmental Quality, 35(4), 1078–1087. https://doi.org/10.2134/jeq2005.0248dup
- Ali, A., Zhang, N., & Santos, R. M. (2023). Mineral Characterization Using Scanning Electron Microscopy (SEM): A Review of the Fundamentals, Advancements, and Research Directions. Applied Sciences, 13(23), 12600. https://doi.org/10.3390/app132312600
- Zhao, J., Yu, X., Shentu, X., & Li, D. (2024). The application and development of electron microscopy for three-dimensional reconstruction in life science: A review. Cell and Tissue Research, 396(1), 1–18. https://doi.org/10.1007/s00441-024-03878-7
- Shirsath, S. R., Sonawane, S. H., & Gogate, P. R. (2012). Intensification of extraction of natural products using ultrasonic irradiations – A review of current status. Chemical Engineering and Processing: Process Intensification, 53, 10–23. https://doi.org/10.1016/j.cep.2012.01.003
- Sökmen, M., Demir, E., & Alomar, S. Y. (2018). Optimization of sequential supercritical fluid extraction (SFE) of caffeine and catechins from green tea. The Journal of Supercritical Fluids, 133, 171–176. https://doi.org/10.1016/j.supflu.2017.09.027
- Badawy, M. E. I., El-Nouby, M. A. M., Kimani, P. K., Lim, L. W., & Rabea, E. I. (2022). A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. Analytical Sciences, 38(12), 1457–1487. https://doi.org/10.1007/s44211-022-00190-8
- Wan, Q., Liu, H., Deng, Z., Bu, J., Li, T., Yang, Y., & Zhong, S. (2021). A critical review of molecularly imprinted solid phase extraction technology. Journal of Polymer Research, 28(10), 401. https://doi.org/10.1007/s10965-021-02744-2
- Zou, X., Bk, A., Abu-Izneid, T., Aziz, A., Devnath, P., Rauf, A., Mitra, S., Emran, T. B., Mujawah, A. A. H., Lorenzo, J. M., Mubarak, M. S., Wilairatana, P., & Suleria, H. A. R. (2021). Current advances of functional phytochemicals in Nicotiana plant and related potential value of tobacco processing waste: A review. Biomedicine & Pharmacotherapy, 143, 112191. https://doi.org/10.1016/j.biopha.2021.112191
- Chen, Y., Jimmy Yu, Q., Li, X., Luo, Y., & Liu, H. (2007). Extraction and HPLC Characterization of Chlorogenic Acid from Tobacco Residuals. Separation Science and Technology, 42(15), 3481–3492. https://doi.org/10.1080/01496390701626677
- Song (Sherry), S., & Ashley, D. L. (1998). Sample purification for the analysis of caffeine in tobacco by gas chromatography–mass spectrometry. Journal of Chromatography A, 814(1–2), 171–180. https://doi.org/10.1016/S0021-9673(98)00384-7
- Machado, K. C., Grassi, M. T., Vidal, C., Pescara, I. C., Jardim, W. F., Fernandes, A. N., Sodré, F. F., Almeida, F. V., Santana, J. S., Canela, M. C., Nunes, C. R. O., Bichinho, K. M., & Severo, F. J. R. (2016). A preliminary nationwide survey of the presence of emerging contaminants in drinking and source waters in Brazil. Science of The Total Environment, 572, 138–146. https://doi.org/10.1016/j.scitotenv.2016.07.210
- Martínez Bueno, M. J., Agüera, A., Gómez, M. J., Hernando, M. D., García-Reyes, J. F., & Fernández-Alba, A. R. (2007). Application of Liquid Chromatography/Quadrupole-Linear Ion Trap Mass Spectrometry and Time-of-Flight Mass Spectrometry to the Determination of Pharmaceuticals and Related Contaminants in Wastewater. Analytical Chemistry, 79(24), 9372–9384. https://doi.org/10.1021/ac0715672
- Robles-Molina, J., Gilbert-López, B., García-Reyes, J. F., & Molina-Díaz, A. (2014). Monitoring of selected priority and emerging contaminants in the Guadalquivir River and other related surface waters in the province of Jaén, South East Spain. Science of The Total Environment, 479–480, 247–257. https://doi.org/10.1016/j.scitotenv.2014.01.121
- Metcalfe, C. D., Miao, X.-S., Koenig, B. G., & Struger, J. (2003). Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada. Environmental Toxicology and Chemistry, 22(12), 2881. https://doi.org/10.1897/02-627
- Godfrey, E., Woessner, W. W., & Benotti, M. J. (2007). Pharmaceuticals in On-Site Sewage Effluent and Ground Water, Western Montana. Ground Water, 45(3), 263–271. https://doi.org/10.1111/j.1745-6584.2006.00288.x
- Zhou, H.-Y., & Liu, C.-Z. (2006). Microwave-assisted extraction of solanesol from tobacco leaves. Journal of Chromatography A, 1129(1), 135–139. https://doi.org/10.1016/j.chroma.2006.07.083
- Montesdeoca-Esponda, S., Palacios-Díaz, M. D. P., Estévez, E., Sosa-Ferrera, Z., Santana-Rodríguez, J. J., & Cabrera, M. D. C. (2021). Occurrence of Pharmaceutical Compounds in Groundwater from the Gran Canaria Island (Spain). Water, 13(3), 262. https://doi.org/10.3390/w13030262
- Chen, Q., Zhao, J., Huang, X., Zhang, H., & Liu, M. (2006). Simultaneous determination of total polyphenols and caffeine contents of green tea by nearinfrared reflectance spectroscopy. Microchemical Journal, 83(1), 42–47. https://doi.org/10.1016/j.microc.2006.01.023
- He, Y., Qin, H., Wen, J., Cao, W., Yan, Y., Sun, Y., Yuan, P., Sun, B., Fan, S., Lu, W., & Li, C. (2023). Characterization of Key Compounds of Organic Acids and Aroma Volatiles in Fruits of Different Actinidia argute Resources Based on High-Performance Liquid Chromatography (HPLC) and Headspace Gas Chromatography–Ion Mobility Spectrometry (HS-GC-IMS). Foods, 12(19), 3615. https://doi.org/10.3390/foods12193615
- Alghamdi, B. A., Alshumrani, E. S., Saeed, M. S. B., Rawas, G. M., Alharthi, N. T., Baeshen, M. N., Helmi, N. M., Alam, M. Z., & Suhail, M. (2020). Analysis of sugar composition and pesticides using HPLC and GC–MS techniques in honey samples collected from Saudi Arabian markets. Saudi Journal of Biological Sciences, 27(12), 3720–3726. https://doi.org/10.1016/j.sjbs.2020.08.018
- Nguyen, H. T., Thai, P. K., Kaserzon, S. L., O’Brien, J. W., Eaglesham, G., & Mueller, J. F. (2018). Assessment of drugs and personal care products biomarkers in the influent and effluent of two wastewater treatment plants in Ho Chi Minh City, Vietnam. Science of The Total Environment, 631–632, 469–475. https://doi.org/10.1016/j.scitotenv.2018.02.309
- Park, S., & Lee, W. (2018). Removal of selected pharmaceuticals and personal care products in reclaimed water during simulated managed aquifer recharge. Science of The Total Environment, 640–641, 671–677. https://doi.org/10.1016/j.scitotenv.2018.05.221
- Petrie, B., Rood, S., Smith, B. D., Proctor, K., Youdan, J., Barden, R., & Kasprzyk-Hordern, B. (2018). Biotic phase micropollutant distribution in horizontal sub-surface flow constructed wetlands. Science of The Total Environment, 630, 648–657. https://doi.org/10.1016/j.scitotenv.2018.02.242
- El Marghani, A., Pradhan, A., Seyoum, A., Khalaf, H., Ros, T., Forsberg, L.-H., Nermark, T., Osterman, L., Wiklund, U., Ivarsson, P., Jass, J., & Olsson, P.-E. (2014). Contribution of pharmaceuticals, fecal bacteria and endotoxin to the inflammatory responses to inland waters. Science of The Total Environment, 488–489, 228–235. https://doi.org/10.1016/j.scitotenv.2014.04.090
- Baalbaki, Z., Sultana, T., Metcalfe, C., & Yargeau, V. (2017). Estimating removals of contaminants of emerging concern from wastewater treatment plants: The critical role of wastewater hydrodynamics. Chemosphere, 178, 439–448. https://doi.org/10.1016/j.chemosphere.2017.03.070
- Subedi, B., Codru, N., Dziewulski, D. M., Wilson, L. R., Xue, J., Yun, S., Braun-Howland, E., Minihane, C., & Kannan, K. (2015). A pilot study on the assessment of trace organic contaminants including pharmaceuticals and personal care products from on-site wastewater treatment systems along Skaneateles Lake in New York State, USA. Water Research, 72, 28–39. https://doi.org/10.1016/j.watres.2014.10.049
- Sun, Q., Li, M., Ma, C., Chen, X., Xie, X., & Yu, C.-P. (2016). Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen, China. Environmental Pollution, 208, 371–381. https://doi.org/10.1016/j.envpol.2015.10.003
- Papageorgiou, M., Kosma, C., & Lambropoulou, D. (2016). Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece. Science of The Total Environment, 543, 547–569. https://doi.org/10.1016/j.scitotenv.2015.11.047
- Baker, D. R., & Kasprzyk-Hordern, B. (2013). Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: New developments. Science of The Total Environment, 454–455, 442–456. https://doi.org/10.1016/j.scitotenv.2013.03.043
- Li, S.-W., & Lin, A. Y.-C. (2015). Increased acute toxicity to fish caused by pharmaceuticals in hospital effluents in a pharmaceutical mixture and after solar irradiation. Chemosphere, 139, 190–196. https://doi.org/10.1016/j.chemosphere.2015.06.010
- Mohapatra, S., Huang, C.-H., Mukherji, S., & Padhye, L. P. (2016). Occurrence and fate of pharmaceuticals in WWTPs in India and comparison with a similar study in the United States. Chemosphere, 159, 526–535. https://doi.org/10.1016/j.chemosphere.2016.06.047
- He, K., Echigo, S., Asada, Y., & Itoh, S. (2018). Determination of Caffeine and Its Metabolites in Wastewater Treatment Plants Using Solid-Phase Extraction and Liquid Chromatography–Tandem Mass Spectrometry. Analytical Sciences, 34(3), 349–353. https://doi.org/10.2116/analsci.34.349
- Nahar, L., Onder, A., & Sarker, S. D. (2020). A review on the recent advances in HPLC, UHPLC and UPLC analyses of naturally occurring cannabinoids (2010–2019). Phytochemical Analysis, 31(4), 413–457. https://doi.org/10.1002/pca.2906
- Shen, Y., Zhang, N., Prinyawiwatkul, W., & Xu, Z. (2021). A rapid LC-MS/MS method for simultaneous determination of nicotine and its key derivatives including hydroxylation isomers. International Journal of Mass Spectrometry, 468, 116642. https://doi.org/10.1016/j.ijms.2021.116642
- Zhang, J., Xie, S., & Yuan, L. (2022). Recent progress in the development of chiral stationary phases for high‐performance liquid chromatography. Journal of Separation Science, 45(1), 51–77. https://doi.org/10.1002/jssc.202100593
- Abdu Hussen, A. (2022). High-Performance Liquid Chromatography (HPLC): A review. Annals of Advances in Chemistry, 6(1), 010–020. https://doi.org/10.29328/journal.aac.1001026
- Venditti, C., Biagioni, V., Adrover, A., & Cerbelli, S. (2022). Impact of transversal vortices on the performance of open-tubular liquid chromatography. Journal of Chromatography A, 1685, 463623. https://doi.org/10.1016/j.chroma.2022.463623