Have a personal or library account? Click to login
Feedforward Neural Network-Based Digital Twin for SHM of Bridges Cover

Feedforward Neural Network-Based Digital Twin for SHM of Bridges

Open Access
|Jul 2025

References

  1. Malomo, D., Scattarreggia, N., Orgnoni, A., Pinho, R., Moratti, M., & Calvi, G. M. (2020). Numerical Study on the Collapse of the Morandi Bridge. Journal of Performance of Constructed Facilities, 34(4). https://doi.org/10. 1061/(ASCE)CF. 1943-5509. 0001428
  2. Collapse of the Carola Bridge in Dresden — Institute of Concrete Structures — TU Dresden. (n.d.). Retrieved September 19, 2024, from https://tu-dres-den.de/bu/bauingenieurwesen/imb/das-institut/news/einsturz-der-carolabruecke-in-dres-den?set_language=en
  3. Farrar, C. R., & Worden, K. (2012). Structural Health Monitoring: A Machine Learning Perspective. Wiley. https://doi.org/10.1002/9781118443118
  4. Farrar, C. R., & Worden, K. (2007). An introduction to structural health monitoring. Philosophical Transactions of the Royal Society a Mathematical, Physical and Engineering Sciences, 365(1851), 303–315. https://doi.org/10.1098/rsta.2006.1928
  5. Fawad, M., Salamak, M., Poprawa, G., Koris, K., Jasinski, M., Lazinski, P., Piotrowski, D., Hasnain, M., & Gerges, M. (2023). Automation of structural health monitoring (SHM) system of a bridge using BIMification approach and BIM-based finite element model development. Scientific Reports, 13(1), 13215. https://doi.org/10.1038/s41598-023-40355-7
  6. Michael Grieves. (2014). Digital Twin: Manufacturing Excellence through Virtual Factory Replication. White Paper, 1–7. https://doi.org/10.5281/zenodo.1493929
  7. Kapteyn, M. G., Knezevic, D. J., & Willcox, K. (2020, January 6). Toward predictive digital twins via component-based reduced-order models and interpretable machine learning. AIAA Scitech 2020 Forum. https://doi.org/10.2514/6.2020-0418
  8. Ye, X. W., Jin, T., & Yun, C. B. (2019). A review on deep learning-based structural health monitoring of civil infrastructures. Smart Structures and Systems, 24(5), 567–585. https://doi.org/10.12989/sss.2019.24.5.567
  9. O. Abdeljaber, O. Avci, S. Kiranyaz, M. Gabbouj, and D. J. Inman. (2017, Feb). Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J Sound Vib, vol. 388, pp. 154–170. https://doi.org/10.1016/j.jsv.2016.10.043
  10. Hielscher, T., Khalil, S., Virgona, N., & Hadigheh, S. A. (2023). A neural network based digital twin model for the structural health monitoring of reinforced concrete bridges. Structures, 57, 105248. https://doi.org/10.1016/j.istruc.2023.105248
  11. Parola, M., Galatolo, F., Torzoni, M., Cimino, M., & Vaglini, G. (2022). Structural Damage Localization via Deep Learning and IoT Enabled Digital Twin. Proceedings of the 3rd International Conference on Deep Learning Theory and Applications, 199–206. https://doi.org/10.5220/0011320600003277.
  12. Wang, B., Li, Z., Xu, Z., Sun, Z., & Tian, K. (2023). Digital twin modeling for structural strength monitoring via transfer learning-based multi-source data fusion. Mechanical Systems and Signal Processing, 200, 110625. https://doi.org/10.1016/j.ymssp.2023.110625
  13. Yu, J., Song, Y., Tang, D., & Dai, J. (2021). A Digital Twin approach based on nonparametric Bayesian network for complex system health monitoring. Journal of Manufacturing Systems, 58, 293–304. https://doi.org/10.1016/j.jmsy.2020.07.005
  14. Malekloo, A., Ozer, E., AlHamaydeh, M., & Girolami, M. (2022). Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights. Structural Health Monitoring, 21(4), 1906–1955. https://doi.org/10.1177/14759217211036880
  15. Liu, Y., Meng, X., Hu, L., Bao, Y., & Hancock, C. (2024). Application of Response Surface-Corrected Finite Element Model and Bayesian Neural Networks to Predict the Dynamic Response of Forth Road Bridges under Strong Winds. Sensors, 24(7), 2091. https://doi.org/10.3390/s24072091
  16. Armijo, A., & Zamora-Sánchez, D. (2024). Integration of Railway Bridge Structural Health Monitoring into the Internet of Things with a Digital Twin: A Case Study. Sensors, 24(7), 2115. https://doi.org/10.3390/s24072115
  17. Al-Hijazeen, A., & Koris, K. (2024). Smart Health Monitoring of Concrete Bridges Using Digital Twin and AI Applications. In Š. Nenadálová & P. Š. Johová (Eds.), 14th Central European Congress on Concrete Engineering (pp. 316–332).
  18. Árpád, Dr. O., Qéza, Dr. T., Péter, Dr. Ó., Péter, Dr. F., Dénes, Dr. D., György, Dr. F., Zsolt, Dr. H., György, Dr. B. L., György, E., László, Dr. V., Lajos, P., Zoltán, T., Zoltán, S., & Józsefné, M. (1990). Az M0 Autóút Soroksári Duna-Ág Hídja Medernyílásának Próbaterhelése. Budapest University of Technology and Economics – Reinforced Concrete Department.
  19. Al-Hijazeen, A., & Koris, K. (2024). Digital Twin Based Health Monitoring and Damage Detection of Reinforced Concrete Bridges. In Dr. B. L. GYÖRGY, S. Sólyóm, & S. Foste (Eds.), 15th fib International PhD Symposium in Civil Engineering (pp. 557–564). The International Federation for Structural Concrete (fib).
  20. Szinyéri, B., Kővári, B., Völgyi, I., Kollár, D., & Joó, A. L. (2023). A strain gauge-based Bridge Weigh-In Motion system using deep learning. Engineering Structures, 277, 115472. https://doi.org/10.1016/j.engstruct.2022.115472
  21. Aurélien Géron. (n.d.). Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow. O’Reilly Media. https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
  22. Mishra, M., Agarwal, A., & Maity, D. (2019). Neural-network-based approach to predict the deflection of plain, steel-reinforced, and bamboo-reinforced concrete beams from experimental data. SN Applied Sciences, 1(6), 584. https://doi.org/10.1007/s42452-019-0622-1
  23. Yoon, J., Lee, J., Kim, G., Ryu, S., & Park, J. (2022). Deep neural network-based structural health monitoring technique for real-time crack detection and localization using strain gauge sensors. Scientific Reports, 12(1), 20204. https://doi.org/10.1038/s41598-022-24269-4
  24. Zhang, G.-Q., Wang, B., Li, J., & Xu, Y.-L. (2022). The application of deep learning in bridge health monitoring: a literature review. Advances in Bridge Engineering, 3(1), 22. https://doi.org/10.1186/s43251-022-00078-7
  25. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
  26. Pan, S. J., & Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359. https://doi.org/10.1109/TKDE.2009.191
  27. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003
  28. Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2021). A Comprehensive Survey on Transfer Learning. Proceedings of the IEEE, 109(1), 43–76. https://doi.org/10.1109/JPROC.2020.3004555
  29. Hegazy, T., Tully, S., & Marzouk, H. (1998). A neural network approach for predicting the structural behavior of concrete slabs. Canadian Journal of Civil Engineering, 25(4), 668–677. https://doi.org/10.1139/cjce-25-4-668
  30. Elshafey, A. A., Dawood, N., Marzouk, H., & Haddara, M. (2013). Predicting of crack spacing for concrete by using neural networks. Engineering Failure Analysis, 31, 344–359. https://doi.org/10.1016/j.engfailanal.2013.02.011
  31. Brinissat, M., Ray, R. P., & Kuti, R. (2023). Evaluation of the Szapáry Long-Span Box Girder Bridge Using Static and Dynamic Load Tests. Infrastructures, 8(5), 91. https://doi.org/10.3390/infrastructures8050091
  32. EN 1992-2: Eurocode 2: Design of concrete structures – Part 2: Concrete bridges - Design and detailing rules. (1992).
DOI: https://doi.org/10.2478/acee-2025-0026 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 157 - 169
Submitted on: Mar 20, 2025
Accepted on: Jun 17, 2025
Published on: Jul 3, 2025
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Asseel AL-HIJAZEEN, Kálmán KORIS, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.