References
- Allen, E., & Zalewski, W. (2010). Form and Forces: Designing efficient, expressive structures. Wiley.
- Bendsøe, M. P., & Sigmund, O. (2003). Topology optimization: Theory, methods and applications. Engineering online library. Springer.
https://doi.org/30512 - Burkhalter, M., & Sumi, C. (Eds.). (2018). Konrad Wachsmann and the grapevine structure (1. Auflage). Park Books.
https://permalink.obvsg.at/AC15072451 - Calvino, I. (1995). Gesammelter Sand: Essays (B. Kroeber, Trans.). Hanser.
- Deo, S., Hölttä-Otto, K., & Filz, G. H. (2020). Creativity and Engineering Education: Assessing the Impact of a Multidisciplinary Project Course on Engineering Students’ Creativity. In American Society of Mechanical Engineers (Ed.), Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference – 2020: Volume 3: 17th International Conference on Design Education (DEC). Diversity and Inclusion in Design Education. the American Society of Mechanical Engineers; Curran Associates Inc.
https://doi.org/10.1115/DETC2020-22250 - DETAIL Architecture GmbH. (2021). 60 Jahre Architektur: Patrik Schumacher über das Detaillieren. 60 Years DETAIL.
https://www.detail.de/de_de/60-jahre-architektur-patrik-schumacher-ueber-das-detaillieren - Elmas, S., Filz, G. H., & Markou, A. A. (2022). An ephemeral, kinematic pavilion in the light of assembly/disassembly and material use/reuse. In G. H. Filz, P. Savolainen, & J. Lilius (Eds.), Architectural Research in Finland: ARF 2022 (Vol. 6, pp. 131–145).
https://doi.org/10.37457/arf.130446 - Engel, H. (1977). Tragsysteme: = Structure systems (4. Auflage). Deutsche Verlags-Anstalt.
- Erzen, J. N., & Emden, C. (2024). Carlo Scarpa: The complete buildings (E. Bugatti, Ed.). Prestel.
- Eschenauer, H. A., & Olhoff, N. (2001). Topology optimization of continuum structures: A review Applied Mechanics Reviews, 54(4), 331–390.
https://doi.org/10.1115/1.1388075 - Extrudr | FD3D GmbH. (2024, June 12). Extrudr - High quality filaments for 3D printing.
https://www.extrudr.com - Filz, G. H. (2013). Low-tech or high-tech? “cut.enoid.tower” – Three times two facets of irregularity. In K.-U. Bletzinger, B. Kröplin, & E. Oñate (Eds.), 6th International Conference on Textile Composites and Inflatable Structures, Structural Membranes 2013 (pp. 250–257). International Center for Numerical Methods in Engineering (CIMNE).
http://www.scopus.com/inward/record.url?scp=84891273541&partnerID=8YFLogxK - Helmcke, J. G. (Ed.). (1990). Mitteilungen des Instituts für Leichte Flächentragwerke (IL): Vol. 33. Radiolarien: = Radiolaria. Krämer.
- Kobayashi, M. H. (2010). On a biologically inspired topology optimization method. Communications in Nonlinear Science and Numerical Simulation, 15(3), 787–802.
https://doi.org/10.1016/j.cnsns.2009.04.014 - Lafuente Hernández, E., Sechelmann, S., Rörig, T., & Gengnagel, C. (2013). Topology Optimisation of Regular and Irregular Elastic Gridshells by Means of a Non-linear Variational Method. In L. Hesselgren, S. Sharma, J. Wallner, N. Baldassini, P. Bompas, & J. Raynaud (Eds.), Advances in Architectural Geometry 2012 (pp. 147–160). Springer Vienna.
https://doi.org/10.1007/978-3-7091-1251-9_11 - Markou, A. A., Elmas, S., & Filz, G. H. (2021). Revisiting Stewart–Gough platform applications: A kinematic pavilion. Engineering Structures, 249, 113304.
https://doi.org/10.1016/j.engstruct.2021.113304 - Mattheck, C. (2010). Denkwerkzeuge nach der Natur (1., unveränd. Nachdr). Karlsruher Inst. für Technologie Campus Nord.
- McNeel, R., & Associates. (2022). Rhinoceros 3D [Computer software].
https://www.rhino3d.com/ - Michell, A. (1904). LVIII. The limits of economy of material in frame-structures. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 8(47), 589–597.
https://doi.org/10.1080/14786440409463229 - Morales-Beltran, M., Selamoğlu, B., Çetin, K., Özdemir, H. A., & Özbey, F. (2022). Exploring 3D printing techniques for the hybrid fabrication of discrete topology optimized structures. International Journal of Architectural Computing, 20(2), 400–419.
https://doi.org/10.1177/14780771211039084 - Moravánszky, Á. (2021). Knoten und Verbindungen. In proHolz Austria (Ed.), Zuschnitt (Vol. 81).
https://www.proholz.at/zuschnitt/81/essay - Preisinger, C. (2022). Karamba3D [Computer software].
https://www.karamba3d.com/ - Prusa, J. (2024, June 12). Prusa3D.
https://www.prusa3d.com - Ruan, G., Filz, G. H., & Fink, G. (2021). An integrated architectural and structural design concept by using local, salvaged timber. In S. A. Behnejad, G. A. R. Parke, & O. Samavati (Eds.), Iass 2020/21 Annual Symposium of the International Association for Shell and Spatial Structures and the 7th International Conference on Spatial Structures: Inspiring the Next Generation Proceedings of the International Conference on Spatial Structures 2020/21 (IASS2020/21-Surrey7). International Association for Shell and Spatial Structures (IASS); Spatial Structures Research Centre of the University of Surrey.
- Soriano, E., Tornabell, P., Naicu, D., & Filz, G. (Oct 2015). Topologically-based curvature in thin elastic shell networks. In VII International Conference on Textile Composites and Inflatable Structures. CIMNE.
https://doi.org/10.13140/RG.2.1.3972.6965 - Thater, D., Cooke, L., & Kelly, K. (Eds.). (2002). Knots + surfaces. Dia Center for the Arts.
- Trimble Inc. (2024a, February 22). 3D Scanning Software | Trimble RealWorks.
https://fieldtech.trimble.com/en/products/scanning/trimble-realworks - Trimble Inc. (2024b, June 2). Datasheet – Trimble X7 3D Laser Scanner.
https://fieldtech.trimble.com/resources/product-guides-brochures-datasheets/datasheet-trimble-x7-3d-laser-scanner - Wunderlich, T., Wasmeier, P., Ohlmann-Lauber, J., Schäfer, T., & Reidl, F. (2013). Objective Specifications of Terrestrial Laserscanners – A Contribution of the Geodetic Laboratory at the Technische Universität München (Blaue Reihe des Lehrstuhls für Geodäsie No. 21). Lehrstuhl für Geodäsie, TUM.
- Zhu, J., Zhao, Y., Zhang, W., Gu, X., Gao, T., Kong, J., Shi, G., Xu, Y., & Quan, D. (2018). Bio-Inspired Feature-Driven Topology Optimization for Rudder Structure Design. Engineered Science. Advance online publication.
https://doi.org/10.30919/es8d716