References
- 1. Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 2004;428(6979):145–50; DOI:10.1038/NATURE02316.10.1038/nature02316
- 2. Woods DC, Tilly JL. Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries. Nat Protoc. 2013;8(5):966–88; DOI:10.1038/NPROT.2013.047.10.1038/nprot.2013.047
- 3. OB O, AM M, D O. Ovarian stem cells: from basic to clinical applications. World J Stem Cells. 2015;7(4):757; DOI:10.4252/WJSC.V7.I4.757.10.4252/wjsc.v7.i4.757
- 4. Nikolic A, Volarevic V, Armstrong L, Lako M, Stojkovic M. Primordial germ cells: current knowledge and perspectives. Stem Cells Int. 2016;2016: 1741072; DOI:10.1155/2016/1741072.10.1155/2016/1741072
- 5. Baker TG, Wai Sum O. Development of the ovary and oogenesis. Clin Obstet Gynaecol. 1976;3(1):3–26; DOI:10.1016/s0306-3356(21)00330-7.10.1016/S0306-3356(21)00330-7
- 6. Dansereau DA, Lasko P. The development of germline stem cells in Drosophila. Methods Mol Biol. 2008;450:3; DOI:10.1007/978-1-60327-214-8_1.10.1007/978-1-60327-214-8_1
- 7. Wylie C. Germ Cells. Cell. 1999;96(2):165–74; DOI:10.1016/S0092-8674(00)80557-7.10.1016/S0092-8674(00)80557-7
- 8. Xie T, Spradling AC. A niche maintaining germ line stem cells in the Drosophila ovary. Science. 2000;290(5490):328–30; DOI:10.1126/SCIENCE.290.5490.328.10.1126/science.290.5490.32811030649
- 9. Nakamura S, Kobayashi K, Nishimura T, Higashijima SI, Tanaka M. Identification of germline stem cells in the ovary of the teleost medaka. Science. 2010;328(5985):1561–3; DOI:10.1126/SCIENCE.1185473.10.1126/science.118547320488987
- 10. Draper BW, McCallum CM, Moens CB. nanos1 is required to maintain oocyte production in adult zebrafish. Dev Biol. 2007;305(2):589; DOI:10.1016/J.YDBIO.2007.03.007.10.1016/j.ydbio.2007.03.007198672617418113
- 11. Kim J, Hyun M, Hibi M, You YJ. Maintenance of quiescent oocytes by noradrenergic signals. Nat Commun 2021 121. 2021;12(1):1–14; DOI:10.1038/s41467-021-26945-x.10.1038/s41467-021-26945-x862643834836956
- 12. Crane AM, Bhattacharya SK. The use of bromodeoxyuridine incorporation assays to assess corneal stem cell proliferation. Methods Mol Biol. 2013;1014:65–70; DOI:10.1007/978-1-62703-432-6_4.10.1007/978-1-62703-432-6_423690005
- 13. Birbrair A. Stem cells heterogeneity. Adv Exp Med Biol. 2019;1123:1–3; DOI:10.1007/978-3-030-11096-3_1.10.1007/978-3-030-11096-3_131016591
- 14. Shamsudeen S, Mahdy H. Granulosa theca cell cancer. Treasure Island:StatPearls; 2022. 8 p.
- 15. Auersperg N, Wong AST, Choi K-C, Kang SK, Leung PCK. Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev. 2001;22(2):255–88; DOI:10.1210/EDRV.22.2.0422.10.1210/edrv.22.2.042211294827
- 16. Bast RC, Hennessy B, Mills GB. The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer. 2009;9(6):415; DOI:10.1038/NRC2644.10.1038/nrc2644281429919461667
- 17. Tudrej P, Kujawa KA, Cortez AJ, Lisowska KM. Characteristics of in vitro model systems for ovarian cancer studies. Oncol Clin Pract. 2019;15(5):246–59; DOI:10.5603/OCP.2019.0024.10.5603/OCP.2019.0024
- 18. Kossaï M, Leary A, Scoazec JY, Genestie C. Ovarian cancer: a heterogeneous disease. pathobiology. 2018;85(1–2):41–9; DOI:10.1159/000479006.10.1159/00047900629020678
- 19. Riva F, Omes C, Bassani R, Nappi RE, Mazzini G, Icaro Cornaglia A, Casasco A. In-vitro culture system for mesenchymal progenitor cells derived from waste human ovarian follicular fluid. Reprod Biomed Online. 2014;29(4):457–69; DOI:10.1016/J.RBMO.2014.06.006.10.1016/j.rbmo.2014.06.00625131558
- 20. Dzafic E, Stimpfel M, Novakovic S, Cerkovnik P, Virant-Klun I. Expression of mesenchymal stem cells-related genes and plasticity of aspirated follicular cells obtained from infertile women. Biomed Res Int. 2014;2014; DOI:10.1155/2014/508216.10.1155/2014/508216395878424724084
- 21. Kossowska-Tomaszczuk K, De Geyter C, De Geyter M, Martin I, Holzgreve W, Scherberich A, Zhang H. The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells. 2009;27(1):210–9; DOI:10.1634/STEMCELLS.2008-0233.10.1634/stemcells.2008-023319224509
- 22. Riva F, Omes C, Bassani R, Nappi RE, Mazzini G, Icaro Cornaglia A, Casasco A. In-vitro culture system for mesenchymal progenitor cells derived from waste human ovarian follicular fluid. Reprod Biomed Online. 2014;29(4):457–69; DOI:10.1016/J.RBMO.2014.06.006.10.1016/j.rbmo.2014.06.00625131558
- 23. Simon LE, Rajendra Kumar T, Duncan FE. In vitro ovarian follicle growth: a comprehensive analysis of key protocol variables. Biol Reprod. 2020;103(3):455; DOI:10.1093/BIOLRE/IOAA073.10.1093/biolre/ioaa073744277732406908
- 24. Kossowska-Tomaszczuk K, De Geyter C, De Geyter M, Martin I, Holzgreve W, Scherberich A, Zhang H. The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells. 2009;27(1):210–9; DOI:10.1634/STEMCELLS.2008-0233.10.1634/stemcells.2008-023319224509
- 25. Kossowska-Tomaszczuk K, De Geyter C. Cells with stem cell characteristics in somatic compartments of the ovary. Biomed Res Int. 2013;2013; DOI:10.1155/2013/310859.10.1155/2013/310859359121723484108
- 26. Varras M, Griva T, Kalles V, Akrivis C, Paparisteidis N. Markers of stem cells in human ovarian granulosa cells: is there a clinical significance in ART? J Ovarian Res. 2012;5(1); DOI:10.1186/1757-2215-5-36.10.1186/1757-2215-5-36353659423164047
- 27. Mattioli M, Gloria A, Turriani M, Berardinelli P, Russo V, Nardinocchi D, Curini V, Baratta M, Martignani E, Barboni B. Osteo-regenerative potential of ovarian granulosa cells: an in vitro and in vivo study. Theriogenology. 2012;77(7):1425–37; DOI:10.1016/J.THERIOGENOLOGY.2011.11.008.10.1016/j.theriogenology.2011.11.00822284224
- 28. Brązert M, Kranc W, Celichowski P, Jankowski M, Piotrowska-Kempisty H, Pawelczyk L, Bruska M, Zabel M, Nowicki M, Kempisty B. Expression of genes involved in neurogenesis, and neuronal precursor cell proliferation and development: Novel pathways of human ovarian granulosa cell differentiation and transdifferentiation capability in vitro. Mol Med Rep. 2020;21(4):1749–60; DOI:10.3892/mmr.2020.10972.10.3892/mmr.2020.10972705778132319615
- 29. Brązert M, Kranc W, Celichowski P, Ożegowska K, Budna-Tukan J, Jeseta M, Pawelczyk L, Bruska M, Zabel M, Nowicki M, Kempisty B. Novel markers of human ovarian granulosa cell differentiation toward osteoblast lineage: a microarray approach. Mol Med Rep. 2019;20(5):4403–14; DOI:10.3892/MMR.2019.10709.10.3892/mmr.2019.10709679795731702034
- 30. Hoang SN, Ho CNQ, Nguyen TTP, Doan CC, Tran DH, Le LT. Evaluation of stemness marker expression in bovine ovarian granulosa cells. Anim Reprod. 2019;16(2):277–81; DOI:10.21451/1984-3143-AR2018-0083.10.21451/1984-3143-AR2018-0083767359633224287
- 31. Stefańska K, Sibiak R, Hutchings G, Dompe C, Moncrieff L, Janowicz K, Jeseta M, Kempisty B, Machatkova M, Mozdziak P. Evidence for existence of molecular stemness markers in porcine ovarian follicular granulosa cells. Med J Cell Biol. 2019; DOI:10.2478/acb-2019-0025.10.2478/acb-2019-0025
- 32. Parte S, Bhartiya D, Telang J, Daithankar V, Salvi V, Zaveri K, Hinduja I. Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev. 2011;20(8):1451–64; DOI:10.1089/SCD.2010.0461.10.1089/scd.2010.0461314882921291304
- 33. 33. Parte S, Patel H, Sriraman K, Bhartiya D. Isolation and characterization of stem cells in the adult mammalian ovary. Methods Mol Biol. 2015;1235:203–29; DOI:10.1007/978-1-4939-1785-3_16.10.1007/978-1-4939-1785-3_1625388396
- 34. Woods DC, White YAR, Niikura Y, Kiatpongsan S, Lee HJ, Tilly JL. Embryonic stem cell-derived granulosa cells participate in ovarian follicle formation in vitro and in vivo. Reprod Sci. 2013;20(5):524–35; DOI:10.1177/1933719113483017.10.1177/1933719113483017363506823536570
- 35. Virant-Klun I, Skutella T, Stimpfel M, Sinkovec J. Ovarian surface epithelium in patients with severe ovarian infertility: a potential source of cells expressing markers of pluripotent/multipotent stem cells. J Biomed Biotechnol. 2011;2011; DOI:10.1155/2011/381928.10.1155/2011/381928323701722187524
- 36. Bukovsky A, Svetlikova M, Caudle MR. Oogenesis in cultures derived from adult human ovaries. Reprod Biol Endocrinol. 2005;3(1):1–13; DOI:10.1186/1477-7827-3-17/COMMENTS.
- 37. Virant-Klun I, Skutella T, Hren M, Gruden K, Cvjeticanin B, Vogler A, Sinkovec J. Isolation of small SSEA-4-positive putative stem cells from the ovarian surface epithelium of adult human ovaries by two different methods. Biomed Res Int. 2013;2013; DOI:10.1155/2013/690415.10.1155/2013/690415359061423509763
- 38. Virant-Klun I, Zech N, Rzǒman P, Vogler A, Cvjetičanin B, Klemenc P, Maličev E, Meden-Vrtovec H. Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation. 2008;76(8):843–56; DOI:10.1111/J.1432-0436.2008.00268.X.10.1111/j.1432-0436.2008.00268.x18452550
- 39. Rungsiwiwut R, Numchaisrika P, Thuwanut P, Pruksananonda K. Characterization of stem cells from human ovarian follicular fluid; a potential source of autologous stem cell for cell-based therapy. Hum Cell. 2021;34(2):300–9; DOI:10.1007/s13577-020-00439-2.10.1007/s13577-020-00439-233543452
- 40. Dompe C, Kulus M, Stefańska K, Kranc W, Chermuła B, Bryl R, Pieńkowski W, Nawrocki MJ, Petitte JN, Stelmach B, Mozdziak P, Jeseta M, Pawelczyk L, Jaśkowski JM, Piotrowska-Kempisty H, Spaczyński RZ, Nowicki M, Kempisty B. Human granulosa cells—stemness properties, molecular cross-talk and follicular angiogenesis. Cells. 2021;10(6); DOI:10.3390/cells10061396.10.3390/cells10061396822987834198768
- 41. Fàbregues F, Ferreri J, Méndez M, Calafell JM, Otero J, Farré R. In Vitro Follicular Activation and Stem Cell Therapy as a Novel Treatment Strategies in Diminished Ovarian Reserve and Primary Ovarian Insufficiency. Front Endocrinol (Lausanne). 2021;11:1135; DOI:10.3389/FENDO.2020.617704/BIBTEX.
- 42. Szczepańska MA, Jagodziński PP, Wender-Ożegowska E. The effect of endometrioma on ovarian reserve. J Med Sci. 2017;86(3):237–9; DOI:10.20883/JMS.2017.201.10.20883/jms.2017.201
- 43. Rasool S, Shah D. Fertility with early reduction of ovarian reserve: the last straw that breaks the Camel’s back. Fertil Res Pract 2017 31. 2017;3(1):1–12; DOI:10.1186/S40738-017-0041-1.10.1186/s40738-017-0041-1563724929046817
- 44. 44. Blackburn EH, Collins K. Telomerase: an RNP enzyme synthesizes DNA. Cold Spring Harb Perspect Biol. 2011;3(5):1–9; DOI:10.1101/CSHPERSPECT.A003558.10.1101/cshperspect.a003558310184820660025
- 45. Jiang J, Wang Y, Sušac L, Chan H, Basu R, Zhou ZH, Feigon J. Structure of telomerase with telomeric DNA. cell. 2018;173(5):1179-1190; DOI:10.1016/J.CELL.2018.04.038.10.1016/j.cell.2018.04.038599558329775593
- 46. Celtikci B, Erkmen GK, Dikmen ZG. Regulation and Effect of Telomerase and Telomeric Length in Stem Cells. Curr Stem Cell Res Ther. 2020;16(7):809–23; DOI:10.2174/1574888x15666200422104423.10.2174/1574888X1566620042210442332321410
- 47. Hiyama E, Hiyama K. Telomere and telomerase in stem cells. Br J Cancer. 2007;96(7):1020–4; DOI:10.1038/SJ.BJC.6603671.10.1038/sj.bjc.6603671236012717353922
- 48. Mondello C, Zongaro S. Telomerase expression in somatic Cells: fountain of youth or Damocles’ sword? Cell Cycle. 2006;5(5):465–6; DOI:10.4161/cc.5.5.2499.10.4161/cc.5.5.249916481747
- 49. Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet 2019 205. 2019;20(5):299–309; DOI:10.1038/s41576-019-0099-1.10.1038/s41576-019-0099-130760854
- 50. Kosebent EG, Uysal F, Ozturk S. Telomere length and telomerase activity during folliculogenesis in mammals. J Reprod Dev. 2018;64(6):477–84; DOI:10.1262/jrd.2018-076.10.1262/jrd.2018-076630584730270279
- 51. Lavranos TC, Mathis JM, Latham SE, Kalionis B, Shay JW, Rodgers RJ. Evidence for ovarian granulosa stem cells: telomerase activity and localization of the telomerase ribonucleic acid component in bovine ovarian follicles. Biol Reprod. 1999;61(2):358–66; DOI:10.1095/BIOLREPROD61.2.358.10.1095/biolreprod61.2.35810411512
- 52. Russo V, Berardinelli P, Martelli A, Di Giacinto O, Nardinocchi D, Fantasia D, Barboni B. Expression of telomerase reverse transcriptase subunit (TERT) and telomere sizing in pig ovarian follicles. J Histochem Cytochem. 2006;54(4):443–55; DOI:10.1369/JHC.4A6603.2006.10.1369/jhc.4A6603.200616400001
- 53. Tománek M, Chronowska E, Kott T, Czerneková V. Telomerase activity in pig granulosa cells proliferating and differentiating in vitro. Anim Reprod Sci. 2008;104(2–4):284–98; DOI:10.1016/J.ANIREPROSCI.2007.02.003.10.1016/j.anireprosci.2007.02.00317363198
- 54. Liu JP, Li H. Telomerase in the ovary. Reproduction. 2010;140(2):215–22; DOI:10.1530/REP-10-0008.10.1530/REP-10-000820562297
- 55. Yamagata Y, Nakamura Y, Umayahara K, Harada A, Takayama H, Sugino N, Kato H. Changes in telomerase activity in experimentally induced atretic follicles of immature rats. Endocr J. 2002;49(6):589–95; DOI:10.1507/ENDOCRJ.49.589.10.1507/endocrj.49.58912625407
- 56. Cheng EH, Chen SU, Lee TH, Pai YP, Huang LS, Huang CC, Lee MS. Evaluation of telomere length in cumulus cells as a potential biomarker of oocyte and embryo quality. Hum Reprod. 2013;28(4):929–36; DOI:10.1093/HUMREP/DET004.10.1093/humrep/det00423377770
- 57. Butts S, Riethman H, Ratcliffe S, Shaunik A, Coutifaris C, Barnhart K. Correlation of telomere length and telomerase activity with occult ovarian insufficiency. J Clin Endocrinol Metab. 2009;94(12):4835–43; DOI:10.1210/JC.2008-2269.10.1210/jc.2008-2269279565019864453
- 58. Chen H, Wang W, Mo Y, Ma Y, Ouyang N, Li R, Mai M, He Y, Bodombossou-Djobo MMA, Yang D. Women with high telomerase activity in luteinised granulosa cells have a higher pregnancy rate during in vitro fertilisation treatment. J Assist Reprod Genet. 2011;28(9):797–807; DOI:10.1007/S10815-011-9600-2.10.1007/s10815-011-9600-2316968321717175
- 59. Misiti S, Nanni S, Fontemaggi G, Cong Y-S, Wen J, Hirte HW, Piaggio G, Sacchi A, Pontecorvi A, Bacchetti S, Farsetti A. Induction of hTERT expression and telomerase activity by estrogens in human ovary epithelium cells. Mol Cell Biol. 2000;20(11):3764–71; DOI:10.1128/MCB.20.11.3764-3771.2000.10.1128/MCB.20.11.3764-3771.20008569210805720
- 60. Bayne S, Li H, Jones MEE, Pinto AR, van Sinderen M, Drummond A, Simpson ER, Liu JP. Estrogen deficiency reversibly induces telomere shortening in mouse granulosa cells and ovarian aging in vivo. Protein Cell. 2011;2(4):333–46; DOI:10.1007/S13238-011-1033-2.10.1007/s13238-011-1033-2487520421574023