Balcerak, E. (2014). Statistical analysis describes urban heat island effect in Europe. Eos, Transactions American Geophysical Union, 95 (6), 60. https://doi.org/10.1002/2014EO060010
Boris Sreznevsky Central Geophysical Observatory (2024). Climate data for the city of Kyiv. http://cgo-sreznevskyi.kyiv.ua/uk/diialnist/klimatolohichna/klimatychni-dani-po-kyievu
Bourbia, F., & Boucheriba, F. (2010). Impact of street design on urban microclimate for semi arid climate (Constantine). Renewable Energy, 35 (2), 343–347. https://doi.org/10.1016/j.renene.2009.07.017
European Committee for Standardization [CEN]. (2005). Ergonomics of the thermal environment – analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria (EN ISO 7730).
Fischer, E. M., Oleson, K. W., & Lawrence, D. M. (2012). Contrasting urban and rural heat stress responses to climate change. Geophysical Research Letters, 39 (3), 1–8. https://doi.org/10.1029/2011GL050576
Gulyás, Á., Unger, J., & Matzarakis, A. (2006). Assessment of the microclimatic and human comfort conditions in a complex urban environment: modelling and measurements. Building and Environment, 41 (12), 1713–1722. https://doi.org/10.1016/j.buildenv.2005.07.001
Heusinkveld, B. G., Steeneveld, G. V., Hove, L. W. A. van, Jacobs, C. M. J., & Holtslag, A. A. M. (2014). Spatial variability of the Rotterdam urban heat island as influenced by urban land use. Journal of Geophysical Research: Atmospheres, 119 (2), 677–692. https://doi.org/10.1002/2012JD019399
International Organization for Standardization [ISO]. (2017). Ergonomics of the thermal environment – assessment of heat stress using the WBGT (wet bulb globe temperature) index (ISO 7243:2017).
Kedissa, C., Outtas, S., & Belarbi, R. (2016). The impact of height/width ratio on the microclimate and thermal comfort levels of urban courtyards. International Journal of Sustainable Building Technology and Urban Development, 7 (3–4), 174–183. https://doi.org/10.1080/2093761X.2017.1302830
Korkina, E. V., Gorbarenko, E. V., Voitovich, E. V., Tyulenev, M. D., & Kozhukhova, N. I. (2023). Temperature Evaluation of a Building Facade with a Thin Plaster Layer under Various Degrees of Cloudiness. Energies, 16 (15), 5783. https://doi.org/10.3390/en16155783
Li, C., & Zhang, N. (2021). Analysis of the daytime urban heat island mechanism in East China. Journal of Geophysical Research: Atmospheres, 126 (12), e2020JD034066. https://doi.org/10.1029/2020JD034066
Luo, M., & Lau, N. C. (2018). Increasing heat stress in urban areas of eastern China: Acceleration by urbanization. Geophysical Research Letters, 45 (23), 13,060–13,069. https://doi.org/10.1029/2018GL080306
Prasad, K., Anchan, S. S., Kamath, S., & Akella, V. (2017). Impact of building orientation on energy consumption in the design of green building. International Journal of Emerging Research in Management & Technology, 6 (2), 8–11. Retrieved from: https://www.researchgate.net/publication/326478143
Smith, P., Lamarca, C., & Henríquez, C. (2019). A comparative study of thermal comfort in public spaces in the cities of Concepción and Chillán, Chile. In C. Henríquez & H. Romero (Eds), Urban Climates in Latin America (pp. 111–134). Springer International Publishing. https://doi.org/10.1007/978-3-319-97013-4_6
Steeneveld, G. J., Koopmans, S., Heusinkveld, B. G., Van Hove, L. W. A., & Holtslag, A. A. M. (2011). Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in the Netherlands. Journal of Geophysical Research: Atmospheres, 116, D20129. https://doi.org/10.1029/2011JD015988
Sviatohorov, I. O. (2024). Increased heat stress for the population of urbanized areas against the background of global climate change. Environmental Safety and Natural Resources, 49 (1), 49–59. https://doi.org/10.32347/2411-4049.2024.1.49-59
Teller, J., & Azar, S. (2001). Townscope II – A computer system to support solar access decision-making. Solar Energy, 70 (3), 187–200. https://doi.org/10.1016/S0038-092X(00)00097-9
Ukrainian Scientific-Research and Training Center of Standardization, Certification and Quality Problems [UkrNDNC]. (2022). Enerhetychna efektyvnist budivel. Metod rozrakhunku enerhospozhyvannya pid chas opalennya, okholodzhennya, ventylyatsiyi, osvitlennya ta haryachoho vodopostachannya [Energy efficiency of buildings. Method for calculating energy consumption during heating, cooling, ventilation, lighting and hot water supply] (DSTU 9190).
Willett, K. M., & Sherwood, S. (2012). Exceedance of heat index thresholds for 15 regions under a warming climate using the wet-bulb globe temperature. International Journal of Climatology, 32 (2), 161–177. https://doi.org/10.1002/joc.2257
Zeng, Y., & Dong, L. (2015). Thermal human biometeorological conditions and subjective thermal sensation in pedestrian streets in Chengdu, China. International Journal of Biometeorology, 59, 99–108. https://doi.org/10.1007/s00484-014-0883-8