Ahmad, S., Dawood, O., Lashin, M. M. A., Khattak, S. U., Javed, M. F., Aslam, F., Khan, M. I., Elkotb, M. A., & Alaboud, T. M. (2023). Effect of coconut fiber on low-density polyethylene plastic-sand paver blocks. Ain Shams Engineering Journal, 14 (8), 101982. https://doi.org/10.1016/j.asej.2022.101982
Arulrajah, A., Yaghoubi, E., Wong, Y., & Horpibulsuk, S. (2017). Recycled plastic granules and demolition wastes as construction materials: Resilient moduli and strength characteristics. Construction and Building Materials, 147, 639–647. https://doi.org/10.1016/j.conbuildmat.2017.04.178
Awoyera, P. O., & Adesina, A. (2020). Plastic wastes to construction products: Status, limitations and future perspective. Case Studies in Construction Materials, 12, e00330. https://doi.org/10.1016/j.cscm.2020.e00330
Candra, A. I., Romadhon, F., Azhari, F. M., & Hidiyati, E. F. (2022). Increasing compressive strength of the red brick with fly ash and rice husk ash. Jurnal Teknik Sipil dan Perencanaan, 24 (2), 107–117. https://doi.org/10.15294/jtsp.v24i2.35855
Dadzie, D., Kaliluthin, A., & Kumar, D. (2020). Exploration of Waste Plastic Bottles Use in Construction. Civil Engineering Journal, 6 (11), 2262–2272. https://doi.org/10.28991/cej-2020-03091616
Dary, R. W., Oktaviani, T., Putri, W. N., & Putra, H. (2024). Effect of compressive strength of red brick with the aaddition of carrageenan. International Journal of Research in Vocational Studies (IJRVOCAS), 3 (4), 144–149. https://doi.org/10.53893/ijrvocas.v3i4.82
Folorunsho, O. W., Suleiman, T. M., Amadi, A. N., Hassan, A., & Hakeem, O. A. (2023). Comparative studies on the compressive strength of pavement blocks made from different geological materials with plastic waste additives and cement pavement for use in road construction. Fudma Journal of Sciences, 7 (6), 191–199. https://doi.org/10.33003/fjs-2023-0706-2185
Garcia, N., Molina, D., Torres, Y., & de Almeida, L. (2023). The proposes for the use of the cleaner production tool (P+L) in the hope plastic solid waste recycling process. Angolan Industry and Chemical Engineering Journal, 3 (3), 29–36. https://www.aincej.com. angolaonline.net/index.php/home/article/view/21/12
Gopinath, M., Abimaniu, P., Dharsan Rishi, C., Pravinkumar, K., & Tejeshwar, P. G. (2023). Experimental investigation on waste plastic fibre concrete with partial replacement of coarse aggregate by recycled coarse aggregate. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.04.573
Gour, M., Sharma, S., Garg, N., Das, S., & Kumar, S. (2022). Utilization of Plastic Waste as a Partial Replacement of Coarse Aggregates in Concrete. IOP Conference Series: Earth and Environmental Science, 1086 (1), 12047. https://doi.org/10.1088/1755-1315/1086/1/012047
Haigh, R. (2024). The mechanical behaviour of waste plastic milk bottle fibres with surface modification using silica fume to supplement 10% cement in concrete materials. Construction and Building Materials, 416, 135215. https://doi.org/10.1016/j.conbuildmat.2024.135215
Handayasari, I. (2017). Studi Alternatif Bahan Konstruksi Ramah Lingkungan Dengan Pemanfaatan Limbah Plastik Kemasan Air Mineral Pada Campuran Beton. Poli-Teknologi, 16 (1), 159366. https://doi.org/10.32722/pt.v16i1.865
Iduwin, T., Hadiwardoyo, S. P., Rifai, A. I., & Lumingkewas, R. H. (2023). Contribution of Plastic Waste in Recycles Concrete Aggregate Paving Block. Journal of Advanced Research in Applied Mechanics, 110 (1), 1–10. https://doi.org/10.37934/aram.110.1.110
Junkes, V. H., Fuziki, M. E. K., Tusset, A. M., Rodrigues, P. H., & Lenzi, G. G. (2024). Environmentally friendly concrete block production: valorization of civil construction and chemical industry waste. Environmental Science and Pollution Research, 31 (12), 17788–17803. https://doi.org/10.1007/s11356-023-31706-y
Kakerissa, Y., & Latuheru, R. (2023). Utilization of plastic waste as a substitutional material for paving block manufacturing. Engineering and Technology Journal, 8 (3). https://doi. org/10.47191/etj/v8i3.07
Krasna, W., Noor, R., & Ramadani, D. (2019). Utilization of plastic waste polyethylene terephthalate (PET) as a coarse aggregate alternative in paving block. MATEC Web of Conferences, 280, 4007. https://doi.org/10.1051/matecconf/201928004007
Muzaidi, I., Anggarini, E., & Hardiani, D. (2022). Solidifikasi Struktur Tanah Lempung Lunak Banjarmasin Dengan Limbah Plastik Pet (Polyethylene Terephthalate). EXTRAPOLASI, 19, 1–8. https://doi.org/10.30996/ep.v19i01.5520
National Standardization Agency [NSA], (2012). Procedures for selecting mixtures for normal concrete, heavy concrete and mass concrete (SNI 7656:2012). National Standardization Agency. https://app.box.com/s/efw1el9wf9l79bnryqpq7sujoht816ok
Paikun, P., Amdani, S. A., Susanto, D. A., & Saepurrahman, D. (2023). Analysis of the compressive strength of concrete from brick wall waste as a concrete mixture. ASTONJADRO, 12 (1), 150–162. https://doi.org/10.32832/astonjadro.v12i1.8145
Saxena, R., Gupta, T., Sharma, R. K., Chaudhary, S., & Jain, A. (2020). Assessment of mechanical and durability properties of concrete containing PET waste. Scientia Iranica, 27 (1), 1–9. https://doi.org/10.24200/SCI.2018.20334
Silva, W. B. C., Barroso, S. H. A., Cabral, A. E. B., Stefanutti, R., & Picado-Santos, L. G. (2023). Assessment of concrete road paving blocks with coal bottom ash: physical and mechanical characterization. Case Studies in Construction Materials, 18, e02094. https://doi.org/10.1016/j.cscm.2023.e02094
Soni, A., Rajput, T., Sahu, K., & Rajak, S. (2022). Utilization of waste plastic in manufacturing of paver blocks. International Journal for Research in Applied Science and Engineering Technology, 10 (2), 939–942. https://doi.org/10.22214/ijraset.2022.40410
Taylor, M. (2004). Proposed changes to ASTM C33. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d556f92f31a600f2442ddbfc4a378f32611c835d
Tempa, K., Chettri, N., Thapa, G., Phurba, Gyeltshen, C., Norbu, D., Gurung, D., & Wangchuk, U. (2022). An experimental study and sustainability assessment of plastic waste as a binding material for producing economical cement-less paver blocks. Engineering Science and Technology, an International Journal, 26, 101008. https://doi.org/10.1016/j.jestch.2021.05.012
Umar, M. Z., & Mustafa, A. F. (2023). The performance optimization of concrete bricks using a sagu fiber. SINERGI, 27 (1), 7–14. https://doi.org/10.2241/sinergi.2023.1.002
Wendimu, T. B., Furgasa, B. N., & Hajji, B. M. (2021). Suitability and utilization study on waste plastic brick as alternative construction material. Journal of Civil, Construction and Environmental Engineering, 6 (1), 9–12. https://doi.org/10.11648/j.jccee.20210601.12
Widiyono, A., Saputro, Y. A., Pambudi, F. B. S., Hermawan, A. B. B. H., & Mahardika, M. A. (2024). Assistance in utilization of plastic waste through eco-paving blocks at Adiwiyata Elementary School, Demak Regency. Warta Pengabdian Andalas, 31 (2), 368–376. https://doi.org/10.25077/jwa.31.2.368-376.2024