Have a personal or library account? Click to login
Hybrid wavelet transform – MLR and ANN models for river flow prediction: Case study of Brahmaputra river (Pancharatna station) Cover

Hybrid wavelet transform – MLR and ANN models for river flow prediction: Case study of Brahmaputra river (Pancharatna station)

Open Access
|Feb 2024

References

  1. Adamowski, J. & Sun, K. (2010). Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. Journal of Hydrology, 390, 85–91. https://doi.org/10.1016/j.jhydrol.2010.06.033
  2. Araghi, A., Adamowski, J. & Martinez, C. J. (2020) Comparison of wavelet-based hybrid models for the estimation of daily reference evapotranspiration in different climates. Journal of Water and Climate Change, 11, 39–53. https://doi.org/10.2166/wcc.2018.113
  3. ASCE Task Committee on Application of Artificial Neural Network in Hydrology (2000). Artificial neural networks in hydrology-II: hydrologic applications. Journal of Hydrologic Engineering, 5 (2), 124–137.
  4. Bajirao, T. S., Kumar, P., Kumar, M., Elbeltagi, A. & Kuriqi, A. (2021). Potential of hybrid wavelet-coupled data-driven-based algorithms for daily runoff prediction in complex river basins. Theoretical and Applied Climatology, 145 (3–4), 1207–1231. https://doi.org/10.1007/s00704-021-03681-2
  5. Besaw, L. E., Rizzo, D. M., Bierman, P. R. & Hackett, W. R. (2010). Advances in ungauged stream flow prediction using artificial neural networks. Journal of Hydrology, 386 (1–4), 27–37. https://doi.org/10.1016/j.jhydrol.2010.02.037
  6. Budu, K. (2013). Comparison of wavelet-based ANN and regression models for reservoir inflow forecasting. Journal of Hydrologic Engineering, 19 (7), 1385–1400. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000892
  7. Dawson, C. W. & Wilby, R. (1998). An artificial neural network approach to rainfall runoff modeling. Hydrological Sciences Journal, 43 (1), 47–66. https://doi.org/10.1080/02626669809492102
  8. Dawson, C. W. & Wilby, R. L. (2001). Hydrological modelling using artificial neural network. Progress in Physical Geography: Earth and Environment, 25 (1), 80–108. https://doi.org/10.1177/030913330102500104
  9. Deka, P. C. & Prahlada, R. (2012). Discrete wavelet neural network approach in significant wave height forecasting for multistep lead time. Ocean Engineering, 43, 32–42. https://doi.org/10.1016/j.oceaneng.2012.01.017
  10. Djerbouai, S. & Souag-Gamane, D. (2016). Drought forecasting using neural networks, wavelet neural networks, and stochastic models: case of the Algerois Basin in North Algeria. Water Resources Management, 30, 2445–2464. https://doi.org/10.1007/s11269-016-1298-6
  11. Goswami, D. C. (1985). Brahmaputra River, Assam, India: physiography, basin denudation, and channel aggradation. Water Resources Research, 21 (7), 959–978. https://doi.org/10.1029/WR021i007p00959
  12. Jain, S. K. & Chalisgaonkar, D. (2000). Setting up stage-discharge relations using ANN. Journal of Hydrologic Engineering, 5 (4), 428–433. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:4(428)
  13. Katipoǧlu, O. M. (2023a). Monthly streamflow prediction in Amasya, Türkiye, using an integrated approach of a feedforward backpropagation neural network and discrete wavelet transform. Modeling Earth Systems and Environment, 9 (2), 2463–2475. https://doi.org/10.1007/s40808-022-01629-7
  14. Katipoǧlu, O. M. (2023b). Evaluation of the success of the hybrid wavelet-based ANFIS approach in the estimation of monthly stream flows of the Bitlis River, Turkey. Water Supply, 23 (2), 836–850. https://doi.org/10.2166/ws.2023.024
  15. Katipoǧlu, O. M. (2023c). Evaporation prediction with wavelet-based hyperparameter optimized K-nearest neighbors and extreme gradient boosting algorithms in a semi-arid environment. Environmental Processes, 10 (4), 50. https://doi.org/10.1007/s40710-023-00669-0
  16. Katipoǧlu, O. M. (2023d). Combining discrete wavelet decomposition with soft computing techniques to predict monthly evapotranspiration in semi-arid Hakkâri province, Türkiye. Environmental Science and Pollution Research, 30 (15), 44043–44066. https://doi.org/10.1007/s11356-023-25369-y
  17. Katipoǧlu, O. M. (2023e). Prediction of streamflow drought index for short-term hydrological drought in the semi-arid Yesilirmak Basin using Wavelet transform and artificial intelligence techniques. Sustainability, 15 (2), 1109. https://doi.org/10.3390/su15021109
  18. Khandekar, S. D. (2014). Hybrid wavelet transform-neural network approach for short term and long term time series flow forecasting (PhD thesis). National Institute of Technology Karnataka, Mangalore.
  19. Khandekar, S. D. & Deka, P. C. (2016). Applications of wavelet transform technique in hydrology – a brief review. In A. Sarma, V. Singh, S. Kartha & R. Bhattacharjya (Eds), Urban Hydrology, Watershed Management and Socio-Economic Aspects. Water Science and Technology Library. Vol. 73. Cham: Springer. https://doi.org/10.1007/978-3-319-40195-9_19
  20. Khazaee Poul, A., Shourian, M. & Ebrahimi, H. (2019). A comparative study of MLR, KNN, ANN and ANFIS models with wavelet transform in monthly stream flow prediction. Water Resources Management, 33, 2907–2923. https://doi.org/10.1007/s11269-019-02273-0
  21. Kişi, Ö. (2009a). Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting. Hydrological Processes, 23 (25), 3583–3597. https://doi.org/10.1002/hyp.7461
  22. Kişi, Ö. (2009b). Neural networks and wavelet conjunction model for intermittent stream flow forecasting. Journal of Hydrologic Engineering, 14 (8), 773–782. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000053
  23. Kişi, Ö. (2010). Wavelet regression model for short-term stream flow forecasting. Journal of Hydrology, 389 (3–4), 344–353. https://doi.org/10.1016/j.jhydrol.2010.06.013
  24. Kişi, Ö. (2011). Wavelet regression model as an alternative to neural networks for river stage forecasting. Water Resource Management, 25, 579–600. https://doi.org/10.1007/s11269-010-9715-8
  25. Kumar, M., Kumar, P., Kumar, A., Elbeltagi, A. & Kuriqi, A. (2022). Modeling stage–discharge– -sediment using support vector machine and artificial neural network coupled with wavelet transform. Applied Water Science, 12 (5), 87. https://doi.org/10.1007/s13201-022-01621-7
  26. Labat, D., Ababou, R. & Mangin, A. (2000). Rainfall–runoff relations for karstic springs. Part II: continuous wavelet and discrete orthogonal multiresolution analyses. Journal of Hydrology, 238 (3–4), 149–178. https://doi.org/10.1016/S0022-1694(00)00322-X
  27. Linh, N. T. T., Ruigar, H., Golian, S., Bawoke, G. T., Gupta, V., Rahman, K. U., Sankaran, A. & Pham, Q. B. (2021). Flood prediction based on climatic signals using wavelet neural network. Acta Geophysica, 69 (4), 1413–1426. https://doi.org/10.1007/s11600-021-00620-7
  28. Mallat, S. G. (1989). Multiresolution approximations and wavelet orthonormal bases of L2 (R). Transactions of the American Mathematical Society, 315 (1), 69–87.
  29. Mallat, S. G. (1998). A wavelet tour of signal processing. San Diego: Academic Press.
  30. Misiti, M., Misiti, Y., Oppenheim, G. & Poggi, J. (2010). Wavelet toolbox: For use with MATLAB. The MathWorks, Natick.
  31. Mohseni, U. & Muskula, S. B. (2023). Rainfall-runoff modeling using artificial neural network – a case study of purna sub-catchment of Upper Tapi Basin, India. Environmental Sciences Proceedings, 25 (1), 1–8. https://doi.org/10.3390/ECWS-7-14232
  32. Moosavi, V., Vafakhah, M., Shirmohammadi, B. & Behnia, N. (2013). A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods. Water Resources Management, 27, 1301–1321. https://doi.org/10.1007/s11269-012-0239-2
  33. Nayak, P., Venkatesh, B., Krishna, B. & Jain, S. K. (2013). Rainfall-runoff modeling using conceptual, data driven, and wavelet based computing approach. Journal of Hydrology, 493, 57–67. https://doi.org/10.1016/j.jhydrol.2013.04.016
  34. Nourani, V., Baghanam, A. H., Adamowski, J. & Gebremichael, M. (2013). Using self-organizing maps and wavelet transforms for space–time pre-processing of satellite precipitation and runoff data in neural network based rainfall–runoff modeling. Journal of Hydrology, 476, 228–243. https://doi.org/10.1016/j.jhydrol.2012.10.054
  35. Nourani, V., Baghanam, A. H., Adamowski, J. & Kisi, O. (2014). Applications of hybrid wavelet– artificial intelligence models in hydrology: a review. Journal of Hydrology, 514, 358–377. https://doi.org/10.1016/j.jhydrol.2014.03.057
  36. Nourani, V., Komasi, M. & Mano, A. A. (2009). Multivariate ANN-Wavelet Approach for Rainfall–Runoff Modeling. Water Resources Management, 23, 2877–2894. https://doi.org/10.1007/s11269-009-9414-5
  37. Patil, A. P. & Deka, P. C. (2017). Performance evaluation of hybrid Wavelet-ANN and Wavelet-ANFIS models for estimating evapotranspiration in arid regions of India. Neural Computing and Applications, 28, 275–285. https://doi.org/10.1007/s00521-015-2055-0
  38. Raghuwanshi, N. S., Singh, R. & Reddy, L. S. (2006). Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India. Journal of Hydrologic Engineering, 11 (1), 71–79. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:1(71)
  39. Rajaee, T., Nourani, V., Zounemat-Kermani, M. & Kisi, O. (2011). River suspended sediment load prediction: application of ANN and wavelet conjunction model. Journal of Hydrologic Engineering, 16 (8), 613–627. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000347
  40. Rao, Y. S. & Krishna, B. (2009). Modelling hydrological time series data using wavelet neural network analysis. IAHS publication, 333, 101–111.
  41. Rezaeian Zadeh, M., Amin, S., Khalili, D. & Singh, V. P. (2010). Daily outflow prediction by multi layer perceptron with logistic sigmoid and tangent sigmoid activation functions. Water Resources Management, 24, 2673–2688. https://doi.org/10.1007/s11269-009-9573-4
  42. Sarma, J. N. (2005). Fluvial process and morphology of the Brahmaputra River in Assam, India. Geomorphology, 70 (3–4), 226–256. https://doi.org/10.1016/j.geomorph.2005.02.007
  43. Shafaei, M. & Kisi, O. (2017). Predicting river daily flow using wavelet-artificial neural networks based on regression analyses in comparison with artificial neural networks and support vector machine models. Neural Computing and Applications, 28, 15–28. https://doi.org/10.1007/s00521-016-2293-9
  44. Sharma, S., Isik, S., Srivastava, P. & Kalin, L. (2013). Deriving spatially distributed precipitation data using the artificial neural network and multilinear regression models. Journal of Hydrologic Engineering, 18 (2), 194–205. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000617
  45. Shoaib, M., Shamseldin, A. Y., Khan, S., Khan, M. M., Khan, Z. M., Sultan, T. & Melville, B. W. (2018). A comparative study of various hybrid wavelet feedforward neural network models for runoff forecasting. Water Resources Management, 32, 83–103. https://doi.org/10.1007/s11269-017-1796-1
  46. Solaimani, K. (2009). Rainfall-runoff prediction based on artificial neural network (a case study: Jarahi watershed). American-Eurasian Journal of Agricultural & Environmental Sciences, 5 (6), 856–865.
  47. Sudheer, K. P., Gosain, A. K. & Ramasastri, K. S. (2002). A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrological Processes, 16 (6), 1325–1330. https://doi.org/10.1002/hyp.554
  48. Sun, Y., Niu, J. & Sivakumar, B. (2019). A comparative study of models for short-term streamflow forecasting with emphasis on wavelet-based approach. Stochastic Environmental Research and Risk Assessment, 33, 1875–1891. https://doi.org/10.1007/s00477-019-01734-7
  49. Tayfur, G. & Singh, V. P. (2006). ANN and fuzzy logic models for simulating event-based rainfall-runoff. Journal of Hydraulic Engineering, 132 (12), 1321–1330. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:12(1321)
  50. Wang, K., Band, S. S., Ameri, R., Biyari, M., Hai, T., Hsu, C. C., Hadjouni, M., Elmannai, H., Chau, K. W. & Mosavi, A. (2022). Performance improvement of machine learning models via wavelet theory in estimating monthly river streamflow. Engineering Applications of Computational Fluid Mechanics, 16 (1), 1833–1848. https://doi.org/10.1080/19942060.2022.2119281
  51. Zhang, Z., Zhang, Q. & Sing, V. P. (2018). Univariate streamflow forecasting using commonly used data-driven models: literature review and case study. Hydrological Sciences Journal, 63 (7), 1091–1111. https://doi.org/10.1080/02626667.2018.1469756
DOI: https://doi.org/10.22630/srees.5258 | Journal eISSN: 2543-7496 | Journal ISSN: 1732-9353
Language: English
Page range: 69 - 94
Submitted on: Sep 2, 2023
Accepted on: Jan 19, 2024
Published on: Feb 28, 2024
Published by: Warsaw University of Life Sciences - SGGW Press
In partnership with: Paradigm Publishing Services

© 2024 Sachin Dadu Khandekar, Dinesh Shrikrishna Aswar, Pandurang Digamber Sabale, Varsha Sachin Khandekar, Mohankumar Namdeorao Bajad, Shivakumar Khaple, published by Warsaw University of Life Sciences - SGGW Press
This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 License.