Have a personal or library account? Click to login
Study on the mechanical performance of sustainable earth blocks from sandy granite saprolite and marble waste Cover

Study on the mechanical performance of sustainable earth blocks from sandy granite saprolite and marble waste

Open Access
|Dec 2025

References

  1. AE & CC (2022). Règles professionnelles Blocs de Terre Comprimèe (BTC) Mayotte. CRAterre. https://doi.org/10.58079/nakf
  2. Association Française de Normalisation [AFNOR]. (1941). Concrete: preparation. Batching water for structural concrete (NF P18-303).
  3. Association Française de Normalisation [AFNOR]. (1990). Aggregates. Measurement of densities, porosity, absorption coefficient and water content of fine gravel and pebbles (NF P18-554).
  4. Association Française de Normalisation [AFNOR]. (1991). Soils: investigation and testing. Determination of particle density. Pycnometer method (NF P 94-054).
  5. Association Française de Normalisation [AFNOR]. (1992a). Soils: investigation and testing. Granulometric analysis. Hydrometer method (NF P 94-056).
  6. Association Française de Normalisation [AFNOR]. (1992b). Soils: investigation and testing. Granulometric analysis. Hydrometer method (NF P 94-057).
  7. Association Française de Normalisation [AFNOR]. (1995). Soils: investigation and testing. Determination of moisture content. Oven drying method (NF P 94-050).
  8. Association Française de Normalisation [AFNOR]. (1996). Soil: investigation and testing. Granulometric analysis. Dry sieving method after washing (NF P 94-056).
  9. Association Française de Normalisation [AFNOR]. (1998). Soils: investigation and testing. Measuring of the methylene blue adsorption capacity of à rocky soil. Determination of the methylene blue of à soil by means of the stain test (NF P 94-068).
  10. Association Française de Normalisation [AFNOR]. (2022). Compressed earth blocks for walls and partitions: definitions. Specifications. Test methods. Delivery acceptance conditions (XP P 13-901).
  11. Association Française de Normalisation [AFNOR]. (2014). Soils: investigation and testing. Determination of the compaction reference values of a soil type. Standard proctor test. Modified proctor test (NF P 94-093).
  12. Atiki, E. (2022). Formulation et caractérisation des blocs de terre comprimée à base de déchets de palmiers dattiers [doctoral thesis]. The University of Mohamed Khider Biskra.
  13. Bahar, R., Benazzoug, M., & Kenai, S. (2004). Performance of compacted cement-stabilised soil. Cement and Concrete Composites, 26(7), 811–820. https://doi.org/10.1016/j.cemconcomp.2004.01.003
  14. Bureau of Indian Standards [BIS]. (1982). Soil based blocks used in general building construction (IS 1725).
  15. Cid-Falceto, J., Mazarrón, F. R., & Cañas, I. (2012). Assessment of compressed earth blocks made in Spain: International durability tests. Construction and Building Materials, 37, 738–745. https://doi.org/10.1016/j.conbuildmat.2012.08.019
  16. Cruz, R., & Bogas, J. A. (2024). Durability of compressed earth blocks stabilised with recycled cement from concrete waste and incorporating construction and demolition waste. Construction and Building Materials, 450, 138673. https://doi.org/10.1016/j.conbuildmat.2024.138673
  17. Dao, K., Ouedraogo, M., Millogo, Y., Aubert, J. E., & Gomina, M. (2018). Thermal, hydric and mechanical behaviours of adobes stabilized with cement. Construction and Building Materials, 158, 84–96. https://doi.org/10.1016/j.conbuildmat.2017.10.001
  18. Elahi, T. E., Shahriar, A. R., & Islam, M. S. (2021). Engineering characteristics of compressed earth blocks stabilized with cement and fly ash. Construction and Building Materials, 277, 122367. https://doi.org/10.1016/j.conbuildmat.2021.122367
  19. European Committee for Standardization [CEN]. (2015). Tests for geometrical properties of aggregates. Part 8: Assessment of fines. Sand equivalent test (EN 933-8:2012+A1:2015).
  20. European Committee for Standardization [CEN]. (2016). Methods of testing cement. Part 1: Determination of strength (EN 196-1).
  21. European Committee for Standardization [CEN]. (2020). Tests for geometrical properties of aggregates. Part 2: Determination of particle size distribution. Test sieves, nominal size of apertures (EN 933-2).
  22. Guettala, A., Abibsi, A., & Houari, H. (2006). Durability study of stabilized earth concrete under both laboratory and climatic conditions exposure. Construction and Building Materials, 20(3), 119–127. https://doi.org/10.1016/j.conbuildmat.2005.02.001
  23. Institut Algérien de Normalisation [IANOR]. (2013). Composition, spécifications et critères de conformité des ciments courants (NA 442-2013).
  24. Kerali, A. G. (2001). Durability of compressed and cement-stabilised building blocks [doctoral thesis]. The University of Warwick, Coventry.
  25. Kumar, N., & Barbato, M. (2022). Effects of sugarcane bagasse fibers on the properties of compressed and stabilized earth blocks. Construction and Building Materials, 315, 125552. https://doi.org/10.1016/j.conbuildmat.2021.125552
  26. Moevus, M., Anger, R., & Fontaine, L. (2012, April 22–27). Hygro-thermo-mechanical properties of earthen materials for construction: a literature review. Terra 2012, XIth International Conference on the Study and Conservation of Earthen Architectural Heritage, Lima, Peru. https://hal.science/hal-01005948v1/document
  27. Muhwezi, L., & Achanit, S. E. (2019). Effect of sand on the properties of compressed soil-cement stabilized blocks. Colloid and Surface Science, 4(1), 1–6. https://doi.org/10.11648/j.css.20190401.11
  28. Poullain, P., Leklou, N., Laibi, A. B., & Gomina, M. (2019). Propriétés des briques de terre compressées réalisées àpartir de matériaux traditionnels du Bénin [Properties of compressed earth blocks made of traditional materials from Benin]. Journal of Composite & Advanced Materials/Revue des Composites et des Matériaux Avancés, 29(4), 233–241.
  29. Riza, F. V., & Rahman, I. A. (2015). The properties of compressed earth-based (CEB) masonry blocks. Eco-efficient Masonry Bricks and Blocks: Design, Properties and Durability, 2015, 379–392. https://doi.org/10.1016/B978-1-78242-305-8.00017-6
  30. Taallah, B. (2014). Etude du comportement physico-mécanique du bloc de terre comprimée avec fibres [doctoral thesis]. The University of Mohamed Khider Biskra. http://thesis.univ-biskra.dz/1173/1/Geni_civil_d4_2014.pdf
  31. Taallah, B., Guettala, A., Guettala, S., & Kriker, A. (2014). Mechanical properties and hygroscopicity behavior of compressed earth block filled by date palm fibers. Construction and Building Materials, 59, 161–168. https://doi.org/10.1016/j.conbuildmat.2014.02.058
  32. Tripura, D. D., & Singh, K. D. (2015). Characteristic properties of cement-stabilized rammed earth blocks. Journal of Materials in Civil Engineering, 27(7), 1–8. https://doi.org/10.1061/(asce)mt.1943-5533.0001170
  33. Venkatarama Reddy, B. V., & Gupta, A. (2005). Characteristics of soil-cement blocks using highly sandy soils. Materials and Structures/Materiaux et Constructions, 38(280), 651–658. https://doi.org/10.1617/14265
  34. Venkatarama Reddy, B. V., & Latha, M. S. (2014). Influence of soil grading on the characteristics of cement stabilised soil compacts. Materials and Structures/Materiaux et Constructions, 47(10), 1633–1645. https://doi.org/10.1617/s11527-013-0142-1
  35. Walker, P. J. (1995). Strength, durability and shrinkage characteristics of cement stabilised soil blocks. Cement and Concrete Composites, 17(4), 301–310. https://doi.org/10.1016/0958-9465(95)00019-9
DOI: https://doi.org/10.22630/srees.10568 | Journal eISSN: 2543-7496 | Journal ISSN: 1732-9353
Language: English
Page range: 327 - 347
Submitted on: Jul 9, 2025
|
Accepted on: Oct 17, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services

© 2025 Rahima Hamideche, Samy Mezhoud, Youcef Toumi, published by Warsaw University of Life Sciences - SGGW Press
This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 License.