Have a personal or library account? Click to login
Corrosion analysis of concrete based on industrial waste and bacteria by non-destructive test methods Cover

Corrosion analysis of concrete based on industrial waste and bacteria by non-destructive test methods

Open Access
|Jun 2025

References

  1. Adil, G., Kevern, J. T., & Mann, D. (2020). Influence of silica fume on mechanical and durability of pervious concrete. Construction and Building Materials, 247, 118453. https://doi.org/10.1016/j.conbuildmat.2020.118453
  2. Ahmad, S., Al-Amoudi, O. S. B., Khan, S. M., & Maslehuddin, M. (2022). Effect of silica fume inclusion on the strength, shrinkage and durability characteristics of natural pozzolan-based cement concrete. Case Studies in Construction Materials, 17, e01255. https://doi.org/10.1016/j.cscm.2022.e01255
  3. Ali, T., Buller, A. S., Abro, F. u. R., Ahmed, Z., Shabbir, S., Lashari, A. R., & Hussain, G. (2022). Investigation on mechanical and durability properties of concrete mixed with silica fume as cementitious material and coal bottom ash as fine aggregate replacement material. Buildings, 12 (1), 44. https://doi.org/10.3390/buildings12010044
  4. Almasaeid, H. H., Suleiman, A., & Alawneh, R. (2022). Assessment of high-temperature damaged concrete using non-destructive tests and artificial neural network modelling. Case Studies in Construction Materials, 16, e01080. https://doi.org/10.1016/j.cscm.2022.e01080
  5. Almashakbeh, Y., & Saleh, E. (2022). Evaluation of ultrasonic pulse velocity (UPV) for reinforced concrete corrosion. Journal of Applied Engineering Science, 20 (4), 1226‒1233. https://doi.org/10.5937/jaes0-38140
  6. Anwar, M., Gad, A. I., & Sayed Khalil, M. (2022). Influence of Using Fly ash and Silica Fume on the Concrete Performance against Chloride Attack. JES. Journal of Engineering Sciences, 50 (6), 325‒334. https://doi.org/10.21608/jesaun.2022.140662.1141
  7. ASTM International [ASTM] (2016). Standard test method for flexural strength of concrete (using simple beam with center-point loading) (ASTM C293/C293M-16).
  8. ASTM International [ASTM] (2018). Standard specification for concrete aggregates (ASTM C33/C33M-18).
  9. ASTM International [ASTM] (2021). Standard test method for compressive strength of cylindrical concrete specimens (ASTM C39/C39M-21).
  10. Badan Standardisasi Nasional [BSN] (2008). Cara uji keausan agregat dengan mesin abrasi los angeles (SNI 2417:2008).
  11. Badan Standardisasi Nasional [BSN] (2012a). Metode uji bahan yang lebih halus dari saringan 75 µm (No. 200) dalam agregat mineral dengan pencucian (SNI ASTM C117:2012).
  12. Badan Standardisasi Nasional [BSN] (2012b). Metode uji untuk analisis saringan agregat halus dan agregat kasar (SNI ASTM C136:2012).
  13. Badan Standardisasi Nasional [BSN] (2016a). Cara uji berat jenis dan penyerapan air agregat kasar (SNI 1969:2016).
  14. Badan Standardisasi Nasional [BSN] (2016b). Cara uji berat jenis dan penyerapan air agregat halus (SNI 1970:2016).
  15. Dixon, D. E., Prestrera, J. R., Burg, G. R., Chairman, S. A., Abdun-Nur, E. A., Barton, S. G., Bell, L. W., Blas Jr, S. J., Carraquillo, R. l., & Carraquillo, P. M. (1991). Standard practice for selecting proportions for normal heavyweight, and mass concrete (ACI 211.1-91) reapproved 1997. ACI Committee.
  16. El Maaddawy, T. A., & Soudki, K. A. (2003). Effectiveness of impressed current technique to simulate corrosion of steel reinforcement in concrete. Journal of Materials in Civil Engineering, 15 (1), 41‒47. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:1(41)
  17. Falmata, A., Sulaiman, A., Mohamed, R., & Shettima, A. (2020). Mechanical properties of self-compacting high-performance concrete with fly ash and silica fume. SN Applied Sciences, 2, 1‒11. https://doi.org/10.1007/s42452-019-1746-z
  18. Ganesh, S., Danish, P., Anita Jessie, J., Ganie, M., & Raina, C. (2020). Experimental study on self-healing concrete with the effect of bacillus subtilis bacteria to improve the strength and sustainability of the concrete. Journal of Green Engineering, 10 (4), 1909‒1923.
  19. Jena, S., Basa, B., Panda, K. C., & Sahoo, N. K. (2020). Impact of Bacillus subtilis bacterium on the properties of concrete. Materials Today: Proceedings, 32, 651–656. https://doi.org/10.1016/j.matpr.2020.03.129
  20. Kanwal, M., Khushnood, R. A., Adnan, F., Wattoo, A. G., & Jalil, A. (2023). Assessment of the MICP potential and corrosion inhibition of steel bars by biofilm forming bacteria in corrosive environment. Cement and Concrete Composites, 137, 104937. https://doi.org/10.1016/j.cemconcomp.2023.104937
  21. Li, W., Lin, X., Bao, D. W., & Xie, Y. M. (2022). A review of formwork systems for modern concrete construction. Structures, 38, 52‒63. https://doi.org/10.1016/j.istruc.2022.01.089
  22. Malaiškienė, J., & Vaičienė, M. (2024). The Influence of silica fly ash and wood bottom ash on cement hydration and durability of concrete. Materials, 17 (16), 4031. https://doi.org/10.3390/ma17164031
  23. Meena, A., Singh, N., & Singh, S. (2023). Sustainable development of high-volume fly ash self-compacting concrete incorporating bottom ash and recycled concrete aggregates. Journal of Materials and Engineering StructuresJMES, 10 (4), 615‒630. https://revue.ummto.dz/index.php/JMES/article/view/3426
  24. Mh, W., Hamzah, A., Jamaluddin, N., Mangi, S., & Ramadhansyah, P. (2020). Influence of bottom ash as a sand replacement material on durability of self-compacting concrete exposed to seawater. Journal of Engineering Science and Technology, 15 (1), 555–571. https://jestec.taylors.edu.my/Vol%2015%20issue%201%20February%202020/15_1_40.pdf
  25. Monika, F., Prayuda, H., Cahyati, M. D., Augustin, E. N., Rahman, H. A., & Prasintasari, A.D. (2022). Engineering properties of concrete made with coal bottom ash as sustainable construction materials. Civil Engineering Journal, 8 (1), 181‒194. http://doi.org/10.28991/CEJ-2022-08-01-014
  26. Morla, P., Gupta, R., Azarsa, P., & Sharma, A. (2021). Corrosion evaluation of geopolymer concrete made with fly ash and bottom ash. Sustainability, 13 (1), 398. https://doi.org/10.3390/su13010398
  27. Nanda, B., & Rout, S. (2021). Properties of concrete containing fly ash and bottom ash mixture as fine aggregate. International Journal of Sustainable Engineering, 14 (4), 809‒819. https://doi.org/10.1080/19397038.2021.1920641
  28. Nayak, D. K., Abhilash, P., Singh, R., Kumar, R., & Kumar, V. (2022). Fly ash for sustainable construction: A review of fly ash concrete and its beneficial use case studies. Cleaner Materials, 6, 100143. https://doi.org/10.1016/j.clema.2022.100143
  29. Nindhita, K. W., Zaki, A., & Zeyad, A. M. (2024). Effect of Bacillus subtilis Bacteria on the mechanical properties of corroded self-healing concrete. Fracture & Structural Integrity/Frattura ed Integrità Strutturale, 18 (68), 140‒158. https://doi.org/10.3221/IGF-ESIS.68.09
  30. Panda, S., Pradhan, M., & Panigrahi, S. K. (2024). Comparative study of OPC and PPC-based concrete properties containing bottom ash and fly ash as fine aggregate. Indian Concrete Journal, 98 (7), 7‒19.
  31. Premalatha, P., Geethanjali, M., Sundararaman, S., & Murali, C. (2023). An experimental investigation on self-healing concrete using “Bacillus subtilis”. Materials Today: Proceedings, 2023, 1‒5. https://doi.org/10.1016/j.matpr.2023.08.118
  32. Priyom, S. N., Islam, M. M., & Shumi, W. (2021). The utilization of Bacillus Subtilis Bacteria to improve the mechanical properties of concrete. Journal of the Civil Engineering Forum, 7 (1), 97‒108. https://doi.org/10.1016/j.matpr.2023.08.118
  33. Rahita, A. C., & Zaki, A. (2023, 9–10 August). Corrosion analysis on reinforcing steel in concrete using the eddy current method. 2023 3rd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), Yogyakarta, Indonesia. https://doi.org/10.1109/ICE3IS59323.2023.10335487
  34. Robles, K. P. V., Gucunski, N., & Kee, S.-H. (2024). Evaluation of steel corrosion-induced concrete damage using electrical resistivity measurements. Construction and Building Materials, 411, 134512. https://doi.org/10.1016/j.conbuildmat.2023.134512
  35. Robles, K. P. V., Yee, J. J., & Kee, S. H. (2022). Electrical resistivity measurements for nondestructive evaluation of chloride-induced deterioration of reinforced concrete – a review. Materials, 15 (8), 2725. https://doi.org/10.3390/ma15082725
  36. Rodrigues, R., Gaboreau, S., Gance, J., Ignatiadis, I., & Betelu, S. (2021). Reinforced concrete structures: A review of corrosion mechanisms and advances in electrical methods for corrosion monitoring. Construction and Building Materials, 269, 121240. https://doi.org/10.1016/j.conbuildmat.2020.121240
  37. Solís-Carcaño, R., & Moreno, E. I. (2008). Evaluation of concrete made with crushed limestone aggregate based on ultrasonic pulse velocity. Construction and Building Materials, 22 (6), 1225‒1231. https://doi.org/10.1016/j.conbuildmat.2007.01.014
  38. Su, T., Wu, J., Zou, Z., Wang, Z., Yuan, J., & Yang, G. (2022). Influence of environmental factors on resistivity of concrete with corroded steel bar. European Journal of Environmental and Civil Engineering, 26 (4), 1229‒1242. https://doi.org/10.1080/19648189.2019.1670265
  39. Wang, L., Jin, M., Guo, F., Wang, Y., & Tang, S. (2021). Pore structural and fractal analysis of the influence of fly ash and silica fume on the mechanical property and abrasion resistance of concrete. Fractals, 29 (02), 2140003. https://doi.org/10.1142/S0218348X2140003X
  40. Zaki, A., Chai, H. K., Aggelis, D. G., & Alver, N. (2015). Non-destructive evaluation for corrosion monitoring in concrete: A review and capability of acoustic emission technique. Sensors, 15 (8), 19069‒19101. https://doi.org/10.3390/s150819069
  41. Zhang, C., & Zhang, F. (2020). Incorporation of silicon fume and fly ash as partial replacement of Portland cement in reinforced concrete: Electrochemical study on corrosion behavior of 316LN stainless steel rebar. International Journal of Electrochemical Science, 15 (5), 3740‒3749. https://doi.org/10.20964/2020.05.77
DOI: https://doi.org/10.22630/srees.10299 | Journal eISSN: 2543-7496 | Journal ISSN: 1732-9353
Language: English
Page range: 109 - 127
Submitted on: Feb 5, 2025
Accepted on: Apr 10, 2025
Published on: Jun 30, 2025
Published by: Warsaw University of Life Sciences - SGGW Press
In partnership with: Paradigm Publishing Services

© 2025 Kharisma Wira Nindhita, Ahmad Zaki, Muhammad Zaini, Arfa Maulana Kusumawijaya, published by Warsaw University of Life Sciences - SGGW Press
This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 License.