Adil, G., Kevern, J. T., & Mann, D. (2020). Influence of silica fume on mechanical and durability of pervious concrete. Construction and Building Materials, 247, 118453. https://doi.org/10.1016/j.conbuildmat.2020.118453
Ahmad, S., Al-Amoudi, O. S. B., Khan, S. M., & Maslehuddin, M. (2022). Effect of silica fume inclusion on the strength, shrinkage and durability characteristics of natural pozzolan-based cement concrete. Case Studies in Construction Materials, 17, e01255. https://doi.org/10.1016/j.cscm.2022.e01255
Ali, T., Buller, A. S., Abro, F. u. R., Ahmed, Z., Shabbir, S., Lashari, A. R., & Hussain, G. (2022). Investigation on mechanical and durability properties of concrete mixed with silica fume as cementitious material and coal bottom ash as fine aggregate replacement material. Buildings, 12 (1), 44. https://doi.org/10.3390/buildings12010044
Almasaeid, H. H., Suleiman, A., & Alawneh, R. (2022). Assessment of high-temperature damaged concrete using non-destructive tests and artificial neural network modelling. Case Studies in Construction Materials, 16, e01080. https://doi.org/10.1016/j.cscm.2022.e01080
Anwar, M., Gad, A. I., & Sayed Khalil, M. (2022). Influence of Using Fly ash and Silica Fume on the Concrete Performance against Chloride Attack. JES. Journal of Engineering Sciences, 50 (6), 325‒334. https://doi.org/10.21608/jesaun.2022.140662.1141
ASTM International [ASTM] (2016). Standard test method for flexural strength of concrete (using simple beam with center-point loading) (ASTM C293/C293M-16).
Badan Standardisasi Nasional [BSN] (2012a). Metode uji bahan yang lebih halus dari saringan 75 µm (No. 200) dalam agregat mineral dengan pencucian (SNI ASTM C117:2012).
Dixon, D. E., Prestrera, J. R., Burg, G. R., Chairman, S. A., Abdun-Nur, E. A., Barton, S. G., Bell, L. W., Blas Jr, S. J., Carraquillo, R. l., & Carraquillo, P. M. (1991). Standard practice for selecting proportions for normal heavyweight, and mass concrete (ACI 211.1-91) reapproved 1997. ACI Committee.
El Maaddawy, T. A., & Soudki, K. A. (2003). Effectiveness of impressed current technique to simulate corrosion of steel reinforcement in concrete. Journal of Materials in Civil Engineering, 15 (1), 41‒47. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:1(41)
Falmata, A., Sulaiman, A., Mohamed, R., & Shettima, A. (2020). Mechanical properties of self-compacting high-performance concrete with fly ash and silica fume. SN Applied Sciences, 2, 1‒11. https://doi.org/10.1007/s42452-019-1746-z
Ganesh, S., Danish, P., Anita Jessie, J., Ganie, M., & Raina, C. (2020). Experimental study on self-healing concrete with the effect of bacillus subtilis bacteria to improve the strength and sustainability of the concrete. Journal of Green Engineering, 10 (4), 1909‒1923.
Jena, S., Basa, B., Panda, K. C., & Sahoo, N. K. (2020). Impact of Bacillus subtilis bacterium on the properties of concrete. Materials Today: Proceedings, 32, 651–656. https://doi.org/10.1016/j.matpr.2020.03.129
Kanwal, M., Khushnood, R. A., Adnan, F., Wattoo, A. G., & Jalil, A. (2023). Assessment of the MICP potential and corrosion inhibition of steel bars by biofilm forming bacteria in corrosive environment. Cement and Concrete Composites, 137, 104937. https://doi.org/10.1016/j.cemconcomp.2023.104937
Li, W., Lin, X., Bao, D. W., & Xie, Y. M. (2022). A review of formwork systems for modern concrete construction. Structures, 38, 52‒63. https://doi.org/10.1016/j.istruc.2022.01.089
Malaiškienė, J., & Vaičienė, M. (2024). The Influence of silica fly ash and wood bottom ash on cement hydration and durability of concrete. Materials, 17 (16), 4031. https://doi.org/10.3390/ma17164031
Meena, A., Singh, N., & Singh, S. (2023). Sustainable development of high-volume fly ash self-compacting concrete incorporating bottom ash and recycled concrete aggregates. Journal of Materials and Engineering Structures – JMES, 10 (4), 615‒630. https://revue.ummto.dz/index.php/JMES/article/view/3426
Mh, W., Hamzah, A., Jamaluddin, N., Mangi, S., & Ramadhansyah, P. (2020). Influence of bottom ash as a sand replacement material on durability of self-compacting concrete exposed to seawater. Journal of Engineering Science and Technology, 15 (1), 555–571. https://jestec.taylors.edu.my/Vol%2015%20issue%201%20February%202020/15_1_40.pdf
Monika, F., Prayuda, H., Cahyati, M. D., Augustin, E. N., Rahman, H. A., & Prasintasari, A.D. (2022). Engineering properties of concrete made with coal bottom ash as sustainable construction materials. Civil Engineering Journal, 8 (1), 181‒194. http://doi.org/10.28991/CEJ-2022-08-01-014
Morla, P., Gupta, R., Azarsa, P., & Sharma, A. (2021). Corrosion evaluation of geopolymer concrete made with fly ash and bottom ash. Sustainability, 13 (1), 398. https://doi.org/10.3390/su13010398
Nanda, B., & Rout, S. (2021). Properties of concrete containing fly ash and bottom ash mixture as fine aggregate. International Journal of Sustainable Engineering, 14 (4), 809‒819. https://doi.org/10.1080/19397038.2021.1920641
Nayak, D. K., Abhilash, P., Singh, R., Kumar, R., & Kumar, V. (2022). Fly ash for sustainable construction: A review of fly ash concrete and its beneficial use case studies. Cleaner Materials, 6, 100143. https://doi.org/10.1016/j.clema.2022.100143
Nindhita, K. W., Zaki, A., & Zeyad, A. M. (2024). Effect of Bacillus subtilis Bacteria on the mechanical properties of corroded self-healing concrete. Fracture & Structural Integrity/Frattura ed Integrità Strutturale, 18 (68), 140‒158. https://doi.org/10.3221/IGF-ESIS.68.09
Panda, S., Pradhan, M., & Panigrahi, S. K. (2024). Comparative study of OPC and PPC-based concrete properties containing bottom ash and fly ash as fine aggregate. Indian Concrete Journal, 98 (7), 7‒19.
Premalatha, P., Geethanjali, M., Sundararaman, S., & Murali, C. (2023). An experimental investigation on self-healing concrete using “Bacillus subtilis”. Materials Today: Proceedings, 2023, 1‒5. https://doi.org/10.1016/j.matpr.2023.08.118
Priyom, S. N., Islam, M. M., & Shumi, W. (2021). The utilization of Bacillus Subtilis Bacteria to improve the mechanical properties of concrete. Journal of the Civil Engineering Forum, 7 (1), 97‒108. https://doi.org/10.1016/j.matpr.2023.08.118
Rahita, A. C., & Zaki, A. (2023, 9–10 August). Corrosion analysis on reinforcing steel in concrete using the eddy current method. 2023 3rd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), Yogyakarta, Indonesia. https://doi.org/10.1109/ICE3IS59323.2023.10335487
Robles, K. P. V., Gucunski, N., & Kee, S.-H. (2024). Evaluation of steel corrosion-induced concrete damage using electrical resistivity measurements. Construction and Building Materials, 411, 134512. https://doi.org/10.1016/j.conbuildmat.2023.134512
Robles, K. P. V., Yee, J. J., & Kee, S. H. (2022). Electrical resistivity measurements for nondestructive evaluation of chloride-induced deterioration of reinforced concrete – a review. Materials, 15 (8), 2725. https://doi.org/10.3390/ma15082725
Rodrigues, R., Gaboreau, S., Gance, J., Ignatiadis, I., & Betelu, S. (2021). Reinforced concrete structures: A review of corrosion mechanisms and advances in electrical methods for corrosion monitoring. Construction and Building Materials, 269, 121240. https://doi.org/10.1016/j.conbuildmat.2020.121240
Solís-Carcaño, R., & Moreno, E. I. (2008). Evaluation of concrete made with crushed limestone aggregate based on ultrasonic pulse velocity. Construction and Building Materials, 22 (6), 1225‒1231. https://doi.org/10.1016/j.conbuildmat.2007.01.014
Su, T., Wu, J., Zou, Z., Wang, Z., Yuan, J., & Yang, G. (2022). Influence of environmental factors on resistivity of concrete with corroded steel bar. European Journal of Environmental and Civil Engineering, 26 (4), 1229‒1242. https://doi.org/10.1080/19648189.2019.1670265
Wang, L., Jin, M., Guo, F., Wang, Y., & Tang, S. (2021). Pore structural and fractal analysis of the influence of fly ash and silica fume on the mechanical property and abrasion resistance of concrete. Fractals, 29 (02), 2140003. https://doi.org/10.1142/S0218348X2140003X
Zaki, A., Chai, H. K., Aggelis, D. G., & Alver, N. (2015). Non-destructive evaluation for corrosion monitoring in concrete: A review and capability of acoustic emission technique. Sensors, 15 (8), 19069‒19101. https://doi.org/10.3390/s150819069
Zhang, C., & Zhang, F. (2020). Incorporation of silicon fume and fly ash as partial replacement of Portland cement in reinforced concrete: Electrochemical study on corrosion behavior of 316LN stainless steel rebar. International Journal of Electrochemical Science, 15 (5), 3740‒3749. https://doi.org/10.20964/2020.05.77