Have a personal or library account? Click to login

Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from Poland

Open Access
|May 2021

Figures & Tables

Figure 1:

Steinernema sandneri n. sp. A: infective juvenile, anterior region; B: first-generation male, anterior region; C: first-generation female, tail region; D: first-generation female, vulval region; E: infective juvenile, tail region; F: first-generation male, tail region; G: spicule; H: gubernaculum. Scale bars as on images. Lateral views.
Steinernema sandneri n. sp. A: infective juvenile, anterior region; B: first-generation male, anterior region; C: first-generation female, tail region; D: first-generation female, vulval region; E: infective juvenile, tail region; F: first-generation male, tail region; G: spicule; H: gubernaculum. Scale bars as on images. Lateral views.

Figure 2:

Steinernema sandneri n. sp. Differential interference contrast (A,C,E) and scanning electron (B,D,F) micrographs of infective juveniles. A – amphid openings, An – anus, BP – bacterial pouch, CP – cephalic papillae, EP – excretory pore, ES – esophagus, F – phasmid opening, H – hyaline part, LF – lateral fields, NR – nerve ring. Scale bars as on images.
Steinernema sandneri n. sp. Differential interference contrast (A,C,E) and scanning electron (B,D,F) micrographs of infective juveniles. A – amphid openings, An – anus, BP – bacterial pouch, CP – cephalic papillae, EP – excretory pore, ES – esophagus, F – phasmid opening, H – hyaline part, LF – lateral fields, NR – nerve ring. Scale bars as on images.

Figure 3.

Steinernema sandneri n. sp. Scanning electron micrographs of first-generation males. A,B: anterior region with excretory pore (EP), deirids (D), cephalic (CP) and labial papillae (LP). C,D: posterior region with genital papillae (arrows), single preanal papilla (S-PA) and mucron (Mu). Scale bars as on images.
Steinernema sandneri n. sp. Scanning electron micrographs of first-generation males. A,B: anterior region with excretory pore (EP), deirids (D), cephalic (CP) and labial papillae (LP). C,D: posterior region with genital papillae (arrows), single preanal papilla (S-PA) and mucron (Mu). Scale bars as on images.

Figure 4:

Steinernema sandneri n. sp. Differential interference contrast micrographs of first- (A,B,E,F,G) and second-generation males (C,D). A,C: anterior region with esophagus (ES), excretory pore (EP) and nerve ring (NR). B,D: posterior region with spicules, gubernaculum, and mucron (Mu). E: spicules. F,G: gubernaculum (lateral and ventral view). Scale bars as on images.
Steinernema sandneri n. sp. Differential interference contrast micrographs of first- (A,B,E,F,G) and second-generation males (C,D). A,C: anterior region with esophagus (ES), excretory pore (EP) and nerve ring (NR). B,D: posterior region with spicules, gubernaculum, and mucron (Mu). E: spicules. F,G: gubernaculum (lateral and ventral view). Scale bars as on images.

Figure 5:

Steinernema sandneri n. sp. Differential interference contrast (A,C,E) and scanning electron (B,D,F) micrographs of first-generation females. An – anus, EP – excretory pore, ES – esophagus, LP – labial papillae, NR – nerve ring, V – vulva. Scale bars as on images.
Steinernema sandneri n. sp. Differential interference contrast (A,C,E) and scanning electron (B,D,F) micrographs of first-generation females. An – anus, EP – excretory pore, ES – esophagus, LP – labial papillae, NR – nerve ring, V – vulva. Scale bars as on images.

Figure 6:

Phylogenetic tree of the phylogenetic relationships of S. sandneri n. sp. with other species of the genus Steinernema based on sequences of the ITS rDNA. Bootstrap values > 50% are indicated at the branching points. The scale bar indicates the number of nucleotide substitutions per site. The evolutionary history was inferred using the Maximum Likelihood method based on the HKY + G model. All positions containing gaps were eliminated. There were a total of 646 positions in the final dataset. Evolutionary analyses were conducted in MEGA6.
Phylogenetic tree of the phylogenetic relationships of S. sandneri n. sp. with other species of the genus Steinernema based on sequences of the ITS rDNA. Bootstrap values > 50% are indicated at the branching points. The scale bar indicates the number of nucleotide substitutions per site. The evolutionary history was inferred using the Maximum Likelihood method based on the HKY + G model. All positions containing gaps were eliminated. There were a total of 646 positions in the final dataset. Evolutionary analyses were conducted in MEGA6.

Figure 7:

Phylogenetic tree of the phylogenetic relationships of S. sandneri n. sp. with other species of the genus Steinernema based on sequences of the D2D3 regions. Bootstrap values > 50% are indicated at the branching points. The scale bar indicates the number of nucleotide substitutions per site. The evolutionary history was inferred using the Maximum Likelihood method based on the GTR + G model. All positions containing gaps were eliminated. There were a total of 850 positions in the final dataset. Evolutionary analyses were conducted in MEGA6.
Phylogenetic tree of the phylogenetic relationships of S. sandneri n. sp. with other species of the genus Steinernema based on sequences of the D2D3 regions. Bootstrap values > 50% are indicated at the branching points. The scale bar indicates the number of nucleotide substitutions per site. The evolutionary history was inferred using the Maximum Likelihood method based on the GTR + G model. All positions containing gaps were eliminated. There were a total of 850 positions in the final dataset. Evolutionary analyses were conducted in MEGA6.

Figure 8:

Phylogenetic tree of the phylogenetic relationships of S. sandneri n. sp. with other species of the genus Steinernema based on cox1 gene sequences. Bootstrap values > 50% are indicated at the branching points. The scale bar indicates the number of nucleotide substitutions per site. The evolutionary history was inferred using the Maximum Likelihood method based on the HKY + G + I model. All positions containing gaps were eliminated. There were a total of 567 positions in the final dataset. Evolutionary analyses were conducted in MEGA6.
Phylogenetic tree of the phylogenetic relationships of S. sandneri n. sp. with other species of the genus Steinernema based on cox1 gene sequences. Bootstrap values > 50% are indicated at the branching points. The scale bar indicates the number of nucleotide substitutions per site. The evolutionary history was inferred using the Maximum Likelihood method based on the HKY + G + I model. All positions containing gaps were eliminated. There were a total of 567 positions in the final dataset. Evolutionary analyses were conducted in MEGA6.

Morphometrics (in μm) of different developmental stages of Steinernema sandneri n_ sp_ [mean ± SE (range)] [N = 25]_

First generationSecond generation
MalesFemalesMalesFemalesInfective juveniles
CharacterHolotypeParatypesParatypesParatypesParatypesParatypes
Body length [L]1,565.31,461 ± 22.1 (1,205.7–1,635.3)4,628 ± 46.4 (4,244.0–5,014.0)946 ± 13.8 (817.5–1,093.8)2,120 ± 51.5 (1,640.6–2,753.2)843.0 ± 13.9 (708.2–964.5)
Greatest body width [W]143.0155.1 ± 2.7 (123.8–177.7)209.6 ± 3.4 (181.3–261.3)70.1 ± 1.1 (54.9–79.5)126.6 ± 3.3 (88.9–146.6)27.4 ± 0.5 (23.0–31.9)
Anterior end to excretory pore [EP]88.480.4 ± 1.5 (63.5–92.4)84.4 ± 2.1 (61.4–101.6)69.8 ± 1.5 (59.0–84.6)72.1 ± 1.3 (57.3–88.4)55.9 ± 0.8 (44.4–64.2)
Anterior end to nerve ring [NR]121.9126.0 ± 1.5 (112.0–138.1)146.7 ± 1.2 (132.5–157.6)97.7 ± 0.8 (86.4–105.8)113.7 ± 1.1 (102.5–124.6)102.6 ± 1.4 (82.6–117.9)
Anterior end to esophagus [ES]155.9157.2 ± 1.1 (147.6–169.6)184.7 ± 1.0 (173.2–193.9)120.5 ± 1.1 (109.0–128.7)145.8 ± 1.4 (130.3–158.5)138.4 ± 0.5 (122.5–150.5)
Testis reflection461.6452.1 ± 9.5 (359.3–537.7)202.6 ± 13.2 (84.9–379.2)
Tail length [T]45.141.2 ± 0.5 (35.4–45.5)46.7 ± 1.6 (32.4–60.9)42.3 ± 1.0 (31.7–52.1)57.5 ± 1.4 (46.5–72.1)75.2 ± 1.1 (64.4–86.4)
Anal body diameter [ABW]50.154.1 ± 0.6 (49.9–59.2)94.0 ± 2.9 (62.1–121.8)36.8 ± 0.4 (30.7–40.8)54.4 ± 1.5 (43.1–70.7)17.3 ± 0.4 (14.6–23.8)
Spicule length [SL]64.259.8±0.5 (52.6–65.3)51.2 ± 0.9 (42.5–60.2)
Gubernaculum length [GL]39.243.6 ± 0.5 (39.1–50.2)30.4 ± 0.6 (24.2–39.5)
a [L/W]10.99.5 ± 0.1 (8.5–11.0)22.2 ± 0.4 (17.4–24.7)13.6 ± 0.2 (12.0–16.4)16.9 ± 0.4 (14.1–23.2)30.9 ± 0.3 (27.2–33.8)
b [L/ES]10.49.3 ± 0.1 (8.0–10.2)25.1 ± 0.2 (23.5–27.2)7.9 ± 0.1 (7.2–9.4)14.5±0.3 (12.0–18.1)6.1 ± 0.1 (5.5–6.9)
c [L/T]34.735.6 ± 0.5 (31.2–41.9)102.0 ± 3.8 (75.4–140.3)22.7 ± 0.6 (17.2–28.5)37.3 ± 1.1 (24.6–50.1)11.2 ± 0.1 (10.5–13.2)
Hyaline% [(H/T) × 100]33.6 ± 3.9 (22.7–39.9)
D% [(EP/ES) × 100]56.751.2 ± 0.9 (42.1–59.3)45.7 ± 1.1 (35.5–54.2)58.0±1.2 (48.1–71.9)49.5 ± 0.9 (36.2–58.1)40.4 ± 0.4 (35.8–44.8)
E% [(EP/T) × 100]196.0195.8 ± 4.0 (160.2–240.9)186.0 ± 7.9 (128.1–266.8)167.4 ± 1.2 (128.2–222.8)127.2 ± 3.9 (101.4–163.9)74.4 ± 0.9 (62.6–85.8)
SW% [(SL/ABW) × 100]128.1110.9 ± 1.5 (97.0–126.9)139.6 ± 3.2 (105.1–171.4)
GS% [(GL/SL) × 100]61.179.1 ± 1.2 (60.8–82.8)59.6 ± 1.1 (49.5–68.6)
V% [(Vulva – anterior end/L) × 100]53.7 ± 0.3 (49.0–56.8)54.3 ± 0.8 (39.3–59.1)

Percentage of similarity (upper triangle) and genetic distance measured by the number of nucleotide substitutions (lower triangle) in the sequences of cox1 gene of S_ sandneri n_ sp_ and other closely related Steinernema spp_

SpeciesAcc. no.1234567891011
1 S. sandneri n. sp. MW078544 93.7 93.8 92.9 87.7 86.6 88.4 84.7 86.4 85.9 85.7
2 S. kraussei JN683829 36 94.494.087.186.487.384.185.784.585.0
3 S. kraussei AY943990 35 3295.687.886.886.785.086.285.285.4
4 S. kraussei * MW647850 40 342586.286.486.983.685.784.585.4
5 S. silvaticum MG547572 70 73687884.785.483.683.582.984.7
6 S. oregonense AY943995 76 7775778787.885.586.683.486.8
7 S. feltiae JQ423217 66 727574836985.988.084.096.9
8 S. jollieti GU569068 87 90859393828085.084.784.1
9 S. weiseri GU569075 77 8178819976688582.784.8
10 S. kushidai AY943991 80 888488979491879884.5
11 S. monticolum AY943994 81 858383877574908688

Percentage of similarity (upper triangle) and genetic distance measured by the number of nucleotide substitutions (lower triangle) in the sequences of ITS rDNA of S_ sandneri n_ sp_ and other closely related Steinernema spp_

SpeciesAcc. no.12345678910111213141516
1 S. sandneri n. sp. MW078536 97.0 94.5 92.4 90.2 94.1 94.1 94.5 89.6 89.8 89.0 89.4 90.3 88.7 85.8 76.6
2 S. kraussei AY230174 21 95.292.190.490.593.894.988.689.288.689.189.488.085.276.0
3 S. silvaticum AY230162 37 3192.090.490.292.694.688.889.489.288.989.688.084.875.8
4 S. cholashanense EF431959 51 485094.297.293.294.291.392.791.792.892.291.886.677.5
5 S. oregonense AF122019 59 56593393.592.092.189.991.589.791.290.490.486.876.6
6 S. xueshanense FJ660052 67 5963174191.392.190.391.289.091.289.889.985.676.9
7 S. tielingense GU994201 41 425142485694.889.989.589.790.590.189.286.277.2
8 S. xinbinense JN171593 35 34363547503490.890.890.291.591.090.686.677.0
9 S. feltiae AF121050 73 7374576061686095.891.494.093.494.488.976.1
10 S. ichnusae EU421129 71 707150525571622891.895.593.985.288.676.9
11 S. jollieti AY171265 76 73705361626763544691.190.091.186.177.3
12 S. weiseri AY171268 72 6973485255625539325194.596.689.077.0
13 S. nguyeni KP325084 67 697053606167614743563992.987.976.4
14 S. litorale AB243441 78 78805759617363383446244488.777.2
15 S. hebeiense DQ105794 98 97102928490939076808277817474.9
16 S. monticolum AF122017 140 139142133134133132134143135120134132132143

Percentage of similarity (upper triangle) and genetic distance measured by the number of nucleotide substitutions (lower triangle) in the sequences of D2D3 domain of 28 S rDNA of S_ sandneri n_ sp_ and other closely related Steinernema spp_

SpeciesAcc. no.1234567891011121314
1 S. sandneri n. sp. MW078535 98.2 98.2 98.2 96.2 97.5 97.5 96.8 96.8 96.6 96.1 97.0 95.7 92.4
2 S. kraussei AF331896 15 99.899.897.298.298.997.698.297.997.498.196.292.6
3 S. kraussei GU569053 15 299.597.298.699.197.898.598.197.698.196.692.7
4 S. kraussei * MW647849 15 2497.298.298.997.798.297.897.397.095.792.9
5 S. silvaticum MG547576 32 24242497.296.896.196.696.195.796.794.791.1
6 S. cholashanense EF520284 21 1412142498.497.598.197.797.297.896.492.7
7 S. oregonense AF331891 21 9711271497.998.798.298.098.696.993.4
8 S. xueshanense FJ666053 27 19191933201898.097.997.398.196.692.7
9 S. feltiae AF3311906 27 1513172916111799.398.899.497.293.3
10 S. ichnusae EU421130 28 18161832191417598.698.997.293.3
11 S. jollieti GU569051 32 2220243623162291298.996.793.1
12 S. weiseri GU569059 26 1616182819121658997.193.7
13 S. texanum EF152569 37 312931453026282423272593.1
14 S. monticolum EF439651 56 535354695649565152544953

Steinernema sandneri n_ sp_ – permanent slides description and designation numbers in the collection of Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland_

Slide descriptionSlide ID
Slide no. 1 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae) (male), holotype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017MIZ PAN WARSZAWA 2-2021/1
Slide no. 2 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 55 infective juveniles, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017MIZ PAN WARSZAWA 2-2021/2
Slide no. 3 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 36 infective juveniles, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017MIZ PAN WARSZAWA 2-2021/3
Slide no. 4 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 10 (males), first generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E, in 2017MIZ PAN WARSZAWA 2-2021/4
Slide no. 5 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 10 (males), first generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E, in 2017MIZ PAN WARSZAWA 2-2021/5
Slide no. 6 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 10 (males), first generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E, in 2017MIZ PAN WARSZAWA 2-2021/6
Slide no. 7 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 10 (males), first generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E, in 2017MIZ PAN WARSZAWA 2-2021/7
Slide no. 8 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 10 (males), first generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017MIZ PAN WARSZAWA 2-2021/8
Slide no. 9 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 5 (females), first generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017MIZ PAN WARSZAWA 2-2021/9
Slide no. 10 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 5 (females), first generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017MIZ PAN WARSZAWA 2-2021/10
Slide no. 11 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 5 (females), first generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017MIZ PAN WARSZAWA 2-2021/11
Slide no. 12 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 5 (females), first generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E, in 2017MIZ PAN WARSZAWA 2-2021/12
Slide no. 13 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 5 (females), first generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017MIZ PAN WARSZAWA 2-2021/13
Slide no. 14 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 13 (females), second generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017MIZ PAN WARSZAWA 2-2021/14
Slide no. 15 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 15 (females), second generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017MIZ PAN WARSZAWA 2-2021/15
Slide no. 16 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 9 (females), second generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017MIZ PAN WARSZAWA 2-2021/16
Slide no. 17 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 13 (males), second generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017MIZ PAN WARSZAWA 2-2021/17
Slide no. 18 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 15 (males), second generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017MIZ PAN WARSZAWA 2-2021/18
Slide no. 19 – Steinernema sandneri n. sp. (Rhabditida: Steinernematidae), 15 (males), second generation, paratype, natural host unknown, isolated from soil samples: 51°46’55”N 22°42’35”E in 2017MIZ PAN WARSZAWA 2-2021/19

Percentage of similarity (upper triangle) and genetic distance measured by the number of nucleotide substitutions (lower triangle) in the sequences of ITS rDNA regions of S_ sandneri n_ sp_, S_ kraussei and S_ silvaticum isolates, the closest relatives_

SpeciesAcc. no.12345678910111213141516
1 S. sandneri MW07853697.097.797.797.597.597.297.797.596.696.596.396.095.094.994.5
2 S. kraussei AY2301742198.198.197.997.998.197.295.798.198.297.597.595.495.394.9
3 S. kraussei AY171270171399.298.598.599.698.698.210099.399.498.396.196.095.6
4 S. kraussei AY1712481612599.099.099,099.097.399.298.998.697.695.795.695.2
5 S. kraussei* KY819012181411699.798.299.696.698.598.997.997.295.395.294.8
6 S. kraussei AY1712641814116298.299.986.698.599.297.996.995.395.294.8
7 S. kraussei AB243442201336131398.297.899.698.999.098.396.396.195.7
8 S. kraussei AY2301751714106311396.898.699.398.196.995.595.394.9
9 S. kraussei JN683825171416121241199.298.599.598.396.196.095.6
10 S. kraussei AY1712581713051111310199.398.698.396.196.095.6
11 S. kraussei AY23017618125786856598.097.695.695.595.0
12 S. kraussei* MW647848201638141461343897.895.695.595.0
13 S. kraussei AY23016128151115192111211011161495.395.194.7
14 S. silvaticum MG5438453430262832322531242630293199.999.4
15 S. silvaticum AY17125535312729333326322527313032299.6
16 S. silvaticum AY2301623733293135352834262932323432

Details on taxa used in the molecular analyses_

GeneBank accession no.
SpeciesIsolate name/geographic originITS rDNA28S rDNA cox1
Steinernema sandneri n. sp. S17-050, Poland MW078536 MW078535 MW078544
Steinernema affine B1, England AF331899
Steinernema affine The NetherlandsAY171298
Steinernema akhursti ChinaDQ375757
Steinernema bicornutum Serbia AF331904
Steinernema bicornutum YugoslaviaAF121048
Steinernema cameroonense OB, CameroonJX985267
Steinernema carpocapsae RussiaAY171282
Steinernema cholashanense Tibet, ChinaEF431959EF520284
Steinernema citrae 141-C, South AfricaEU740970GU004534
Steinernema costaricense Costa Rica EF187017
Steinernema feltiae Bodega Bay, USA AF331906
Steinernema feltiae SN, USAAF121050
Steinernema feltiae 3, Portugal JQ423217
Steinernema glaseri NC, USA AF331908
Steinernema glaseri NJ, USAAF122015
Steinernema hebeiense G6, ChinaDQ105794
Steinernema hermaphroditum VK-2013, IndiaKC252604
Steinernema ichnusae Sardinia, ItalyEU421129EU421130
Steinernema jollieti Monsanto, USA GU569051GU569068
Steinernema jollieti 73, USAAY171265
Steinernema kraussei Westphalia, GermanyAY230175AF331896AY943990
Steinernema kraussei Altai 35, RussiaAY171270
Steinernema kraussei Nash, UKAY230176
Steinernema kraussei ItalyAY230174
Steinernema kraussei IcelandAY171248
Steinernema kraussei 20F, PortugalJN683825
Steinernema kraussei D, SwitzerlandAY171258
Steinernema kraussei RussiaAY171264
Steinernema kraussei HkHm22, JapanAB243442
Steinernema kraussei Skr-LUB, Lublin, PolandKY819012
Steinernema kraussei B2, UKAY230161
Steinernema kraussei 20F, Portugal JN683829
Steinernema kraussei Quebec, Canada GU569053
Steinernema kraussei SKR S11-50, PolandMW647848MW647849MW647850
Steinernema kushidai Hamakita, JapanAB243440
Steinernema kushidai N22, Japan AY943991
Steinernema kushidai Japan AF331897
Steinernema litorale AiAt199, JapanAB243441
SpeciesIsolate name/geographic originGeneBank accession no.
ITS rDNA28S rDNA cox1
Steinernema monticolum Korea, South KoreaAF122017EF439651
Steinernema monticulum Mt. Chiri, South Korea AY943994
Steinernema nguyeni F2, South AfricaKP325084
Steinernema oregonense Oregon, USAAF122019
Steinernema oregonense OS-10, USA AF331891AY943995
Steinernema sangi VietnamAY355441GU569057
Steinernema scarabaei New Jersey, USA AY172023
Steinernema scarabaei ChileFJ263673
Steinernema silvaticum S16/019, PolandMG543845MG547576MG547572
Steinernema silvaticum B, GermanyAY171255
Steinernema silvaticum B3, UK (type)AY230162
Steinernema texanum Texas, USAEF152568EF152569
Steinernema tielingense LFS65, ChinaGU994201GU994202
Steinernema weiseri F, GermanyAY171268
Steinernema weiseri Turkey GU569059GU569075
Steinernema xinbinense LFS8, ChinaJN171593
Steinernema xinbinense LFS40, China GU994202
Steinernema xueshanense Yunnan, ChinaFJ666052FJ666053
Caenorhabditis elegans N2 Bristol, USA NC001328
Caenorhabditis elegans X03680X03680

Comparative morphometrics of third-stage infective juveniles of S_ sandneri n_ sp_ and related Steinernema spp_

Morphometric character a
SpeciesLWEPNRESTabcD%E%Reference
S. kushidai 589 (424–662)26 (22–31)46 (42–50)76 (70–84)111 (106–120)50 (44–59)22.5 (19–25)5.3 (4.9–5.9)11.7 (10–13)41 (38–44)92 (NA) Mamiya, (1988)
S. hebeiense 658 (610–710)26 (23–28)48 (43–51)78 (73–83)107 (100–111)66 (63–71)26 (24–28)6.2 (5.7–6.7)10 (9.4–11)45 (40–50)72 (65–80) Chen et al. (2006)
S. puntauvense 670 (631–728)33 (31–38)25 (20–30)54 (46–69)94 (81–103)54 (51–59)20 (17–23)6.1 (7.1–7.9)12 (11–13)42 (25–50)44 (35–56)Uribe–Lorío et al. (2007)
S. xinbinense 694 (635–744)30 (28–31)51 (46–53)86 (75–90)116 (109–125)73 (65–78)24 (21–25)6.1 (5–7)9.7 (8–11)44 (40–47)71 (65–78) Ma et al. (2012)
S. jollieti 711 (625–820)23 (20–28)60 (53–65)NA123 (115–135)68 (60–73)31 (25–34)5.7 (4.9–6.4)10.5 (9.0–11.7)48 (46–50)88 (NA) Spiridonov et al. (2004b)
S. nguyeni 737 (673–796)25 (22–28)52 (47–58)80 (74–86)110 (101–121)67 (61–73)29 (27–33)6.7 (6.2–7.4)11 (10–12)48 (43–57)79 (70–86) Malan et al. (2016)
S. weiseri 740 (586–828)25 (24–29)57 (43–65)84 (72–92)113 (95–119)60 (49–68)29 (25–33)6.6 (5.7–7.2)12 (10–14)51 (44–55)95 (NA) Mráček et al. (2003)
S. sangi 753 (704–784)35 (30–40)52 (46–54)91 (78–97)127 (120–138)81 (76–89)22 (19–25)5.9 (5.6–6.3)9.3 (8.7–10.2)40 (36–44)62 (56–70) Phan et al. (2001)
S. citrae 754 (623–849)26 (23–28)56 (49–64)98 (83–108)125 (118–137)71 (63–81)30 (25–34)6.0 (5.1–7.1)15 (13–14)44 (39–58)110 (85–132) Stokwe et al. (2011)
S. texanum 756 (732–796)30 (29–34)59 (52–62)92 (84–102)115 (111–120)73 (60–79)25 (22–27)6.5 (6.2–7.0)10 (9.6–12.5)51 (46–53)81 (76–88) Nguyen et al. (2007)
S. akhursti 812 (770–835)33 (33–35)59 (55–60)90 (83–95)119 (115–123)73 (68–75)24 (23–26)6.8 (6.6–7.2)11 (10–12)47 (45–50)77 (73–86) Qiu et al. (2005)
S. sandneri n. sp. 843 (708965) 27 (2332) 56 (4464) 103 (83118) 138 (123151) 75 (6486) 31 (2734) 6.1 (5.56.9) 11.2 (1113.2) 40 (3645) 74 (6386)
S. cholashanense 843 (727–909)30 (26–35)62 (59–65)87 (72–97)125 (110–138)73 (60–80)28 (24–34)6.8 (6.1–7.2)12 (10–14)49 (46–53)81 (76–91) Nguyen et al., (2008)
S. feltiae 849 (766–928)29 (22–32)63 (58–67)113 (108–117)136 (130–143)86 (81–89)30 (27–34)6.4 (5.8–6.8)10 (9.4–11)46 (44–50)74 (67–81) Nguyen et al., (2007)
S. silvaticum 860 (670–975)30 (26–35)62 (51–73)96 (75–109)121 (100–141)75 (63–86)29 (23–33)7.3 (6.3–7.7)11.4 (9.9–13.1)50 (46–56) Sturhan et al. (2005)
S. xueshanense 860 (768–929)30 (29–33)67 (60–72)91 (81–96)135 (130–143)87 (80–92)28 (26–32)6.4 (5.8–7.0)9.9 (9.0–11)50 (46–52)78 (70–90) Mrácˇek et al. (2009)
S. ichnusae 866 (767–969)31 (27–35)63 (59–68)102 (94–108)138 (119–148)81 (76–89)28 (24–32)6.3 (5.6–6.9)11 (8.8–12)46 (42–49)77 (68–83) Tarasco et al. (2008)
S. litorale 909 (834–988)31 (28–33)61 (54–69)96 (89–104)125 (114–133)83 (72–91)29.5 (27–31)7.3 (6.7–7.9)11 (9.7–11.9)49 (44–56)73 (68–84) Yoshida (2004)
S. tielingense 915 (824–979)35 (32–38)69 (64–73)98 (90–105)128 (120–135)81 (74–85)26 (23–28)7 (6–8)11 (9–13)55 (47–61)88 (85–94) Ma et al. (2012)
S. kraussei 951 (797–1,102)33 (30–36)63 (50–66)105 (99–111)134 (119–145)79 (63–86)29 (NA)7.1 (NA)12.1 (NA)47 (NA)80 (NA) Nguyen et al. (2007)
S. oregonense 980 (820–1,110)34 (28–38)66 (60–72)NA132 (116–148)70 (64–78)30 (24–37)7.6 (6–8)14 (12–16)50 (40–60)100 (90–110) Liu and Berry (1996)

Comparative morphometrics of first-generation males of S_ sandneri n_ sp_ and related Steinernema spp_

Morphometric character a
SpeciesSLGLWD%SW%GS%MUC b n
S. sandneri n. sp. 60 (5365) 44 (3950) 155 (124178) 51 (4259) 111 (97127) 79 (61-83) P 25
S. akhursti 90 (85–100)64 (58–68)131 (115–150)56 (52–61)180 (140–200)71 (65–77)P20
S. cholashanense 66 (60–71)39 (32–45)137 (73–204)64 (50–85)115 (92–144)71 (61–85)P20
S. citrae 65 (57–80)44 (32–59)103 (87–113)58 (47–67)198 (156–233)68 (48–89)P20
S. costaricense 92 (81–101)46 (41–51)128 (89–157)53 (51–66)160 (150–170)49 (45–55)A19
S. feltiae 70 (65–77)41 (34–47)75 (60–90)60 (51–64)113 (99–130)59 (52–61)P25
S. hebeiense 57 (51–63)46 (38–50)86 (74–98)51 (48–59)140 (120–170)80 (60–90)A20
S. ichnusae 66 (64–67)44 (43–46)137 (73–204)62 (59–65)139 (120–162)67 (64–69)A20
S. jollieti 64 (55–70)54 (45–60)115 (98–135)64 (53–83)145 (NA)84 (NA)A12
S. kraussei 49 (42–53)33 (29–37)128 (110–144)53 (NA)110 (NA)67 (NA)PNA
S. kushidai 63 (48–72)44 (39–60)97 (75–156)51 (42–59)150 (NA)70 (NA)A20
S. litorale 75 (67–89)53 (44–64)96 (82–111)40 (34–56)174 (154–200)71 (62–81)P25
S. nguyeni 66 (58–75)43 (30–55)82 (58–106)48 (38–57)215 (185–279)66 (46–81)P20
S. oregonense 71 (65–73)56 (52–59)138 (105–161)73 (64–75)151 (NA)79 (NA)A20
S. puntauvense 77 (71–81)34 (30–40)119 (101–139)67 (45–85)170 (140–200)65 (55–75)P19
S. sangi 63 (58–80)40 (34–46)159 (120–225)49 (42–63)150 (120–160)60 (50–70)P20
S. silvaticum 51 (42–64)37 (30–43)65 (52–78)60 (45–63)NANAP26
S. texanum 60 (55–66)45 (39–53)99 (81–116)67 (58–73)157 (127–203)75 (62–84)A20
S. tielingense 88 (79–98)62 (49–70)129 (111–159)71 (64–78)191 (176–212)73 (59–82)A20
S. weiseri 68 (62–72)53 (46–57)112 (84–138)49 (39–60)180 (150–240)80 (70–85)A20
S. xinbinense 56 (49–62)35 (30–41)103 (90–126)45 (41–50)137 (114–156)63 (54–72)P20
S. xueshanense 76 (66–91)49 (41–60)144 (97–159)80 (73–87)152 (93–172)64 (58–95)A20
DOI: https://doi.org/10.21307/jofnem-2021-051 | Journal eISSN: 2640-396X | Journal ISSN: 0022-300X
Language: English
Page range: 1 - 24
Published on: May 21, 2021
Published by: Society of Nematologists, Inc.
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2021 Magdalena Lis, Ewa Sajnaga, Marcin Skowronek, Adrian Wiater, Kamila Rachwał, Waldemar Kazimierczak, published by Society of Nematologists, Inc.
This work is licensed under the Creative Commons Attribution 4.0 License.