References
- Abdulla, W. 2017. Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow. GitHub repository, available at: https://github.com/matterport/Mask_RCNN.
- Baer, C. F., Shaw, F., Steding, C., Baumgartner, M., Hawkins, A., Houppert, A., Mason, N., Reed, M., Simonelic, K., Woodard, W. and Lynch, M. 2005. Comparative evolutionary genetics of spontaneous mutations affecting fitness in rhabditid nematodes. Proceedings of the National Academy of Sciences 102:5785–5790, available at: https://doi.org/10.1073/pnas.0406056102.
- Chelo, I. M. 2014. Experimental determination of invasive fitness in Caenorhabditis elegans. Nature Protocols 9:1392–1400, available at: https://doi.org/10.1038/nprot.2014.098.
- Crombie, T. A., Saber, S., Saxena, A. S., Egan, R. and Baer, C. F. 2018. Head-to-head comparison of three experimental methods of quantifying competitive fitness in C. elegans. PLoS ONE 13:1–11, available at: https://doi.org/10.1371/journal.pone.0201507.
- Cutter, A. D., Morran, L. T. and Phillips, P. C. 2019. Males, outcrossing, and sexual selection in Caenorhabditis Nematodes. Genetics 213, pp. 27–, available at: https://doi.org/10.1534/genetics.119.300244.
- Dutta, A. and Zisserman, A. 2019. The VIA Annotation Software for Images, Audio and Video. ArXiv E-Prints, arXiv:1904.10699.
- Estes, S. and Lynch, M. 2003. Rapid fitness recovery in mutationally degraded lines of Caenorhabditis elegans. Evolution 57:1022–1030, available at: https://doi.org/10.1111/j.0014-3820.2003.tb00313.x.
- Estes, S., Phillips, P. C., Denver, D. R., Thomas, W. K. and Lynch, M. 2004. Mutation accumulation in populations of varying size: the distribution of mutational effects for fitness correlates in Caenorhabditis elegans. Genetics 166:1269–1279, available at: https://doi.org/10.1534/genetics.166.3.1269.
- Everingham, M., Van Gool, L. K. I., Williams, C., Winn, J. and Zisserman, A. 2010. The pascal visual object classes (VOC) challenge. International Journal of Computer Vision 88:303–338, available at: https://doi.org/10.1007/s11263-009-0275-4.
- Fritzsche, K., Timmermeyer, N., Wolter, M. and Michiels, N. K. 2014. Female, but not male, nematodes evolve under experimental sexual coevolution. Proceedings of the Royal Society B: Biological Sciences 281:20140942–20140942, available at: https://doi.org/10.1098/rspb.2014.0942.
- Gray, J. C. and Cutter, A. D. 2014. Mainstreaming Caenorhabditis elegans in experimental evolution. Proceedings of the Royal Society B: Biological Sciences 281:20133055, available at: https://doi.org/10.1098/rspb.2013.3055.
- Gummeson, A., Arvidsson, I., Ohlsson, M., Overgaard, N. C., Krzyzanowska, A., Heyden, A., Bjartell, A. and Aström, K. 2017. “Automatic Gleason grading of H and E stained microscopic prostate images using deep convolutional neural networks”, In Gurcan, M. N. and Tomaszewski, J. E. (Eds), Medical Imaging 2017: Digital Pathology. Orlando, FL, SPIE MEDICAL IMAGING, Vol. 10140, pp. 196–202, available at: https://doi.org/10.1117/12.2253620.
- He, K., Zhang, X., Ren, S. and Sun, J. 2016. Deep residual learning for image recognition. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778.
- He, K., Gkioxari, G., Dollár, P. and Girshick, R. 2017. Mask R-CNN. Proceedings of the IEEE International Conference on Computer Vision, 2980–2988, available at: https://doi.org/10.1109/ICCV.2017.322.
- Hubel, D. H. and Wiesel, T. N. 1968. Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology 195:215–243, available at: https://doi.org/10.1113/jphysiol.1968.sp008455.
- Jung, A. B., Kentaro, W., Crall, J., Tanaka, S., Graving, J., Reinders, C., Yadav, S., Banerjee, J., Vecsei, G., Kraft, A., Rui, Z., Borovec, J., Vallentin, C., Zhydenko, S., Pfeiffer, K., Cook, B., Fernández, I., De Rainville, F. M., Weng, C. H., Ayala-Acevedo, A., Meudec, R., Laporte, M. and others. 2020. imgaug, available at: https://github.com/aleju/imgaug.
- Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D. and Zitnick, C. L. 2014. “Microsoft COCO: common objects in context”, In Fleet, D., Pajdla, T., Schiele, B. and Tuytelaars, T. (Eds), Computer Vision – ECCV 2014. Cham: Springer International Publishing, pp. 740–755.
- Manda-Handzlik, A., Fiok, K., Cieloch, A., Heropolitanska-Pliszka, E. and Demkow, U. 2020. Convolutional neural networks-based image analysis for the detection and quantification of neutrophil extracellular traps. Cells 9:508, available at: http://dx.doi.org/10.3390/cells9020508.
- Palopoli, M. F., Peden, C., Woo, C., Akiha, K., Ary, M., Cruze, L., Anderson, J. L. and Phillips, P. C. 2015. Natural and experimental evolution of sexual conflict within Caenorhabditis nematodes. BMC Evolutionary Biology 15:1–13, available at: https://doi.org/10.1186/s12862-015-0377-2.
- R Core Team 2018. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
- Stiernagle, T. 2006. Maintenance of C. elegans (February 11, 2006), WormBook, ed. The C. elegans Research Community: WormBook, doi: 10.1895/wormbook.1.101.1.
- Teotónio, H., Estes, S., Phillips, P. C. and Baer, C. F. 2017. Experimental evolution with Caenorhabditis Nematodes. Genetics 206:691–716, available at: https://doi.org/10.1534/genetics.115.186288.
- Teotónio, H., Carvalho, S., Manoel, D., Roque, M. and Chelo, I. M. 2012. Evolution of outcrossing in experimental populations of Caenorhabditis elegans. PLoS ONE 7:e35811, available at: https://doi.org/10.1371/journal.pone.0035811.
- Tzutalin. 2015. LabelImg, available at: https://github.com/tzutalin/labelImg.
- Wählby, C., Kamentsky, L., Liu, Z. H., Riklin-Raviv, T., Annie, L., Rourke, E. J. O., Sokolnicki, K. L., Visvikis, O., Ljosa, V., Irazoqui, J. E., Golland, P., Ruvkun, G., Ausubel, F. M. and Anne, E. 2013. An image analysis toolbox for high-throughput C. elegans assays. Nature Methods 9:714–716, available at: https://doi.org/10.1038/nmeth.1984.
- Wang, Y., Chen, Y., Yang, N., Zheng, L., Dey, N., Ashour, A. S., Rajinikanth, V., Tavares, J. M. R. S. and Shi, F. 2019. Classification of mice hepatic granuloma microscopic images based on a deep convolutional neural network. Applied Soft Computing 74:40–50, available at: https://doi.org/https://doi.org/10.1016/j.asoc.2018.10.006.
- Yang, S., Luo, P., Loy, C. C. and Tang, X. 2016. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5525-33.