Have a personal or library account? Click to login
In bromeliad phytotelma, anthropic disturbance does not affect the nematode trophic structure Cover

In bromeliad phytotelma, anthropic disturbance does not affect the nematode trophic structure

Open Access
|Nov 2020

References

  1. Almeida, A. M. and Souza, R. M. 2020. Nematode trophic structure in the phytotelma of Neoregelia cruenta (Bromeliaceae) in relation to microenvironmental and climate variables. Journal of Nematology (In Press).
  2. Balsamo, M., Semprucci, F., Frontalini, F. and Coccioni, R. 2012. “Meiofauna as a tool for marine ecosystem biomonitoring”, In Cruzado, A. (Ed.), Marine Ecosystems. Rijeka: InTech, pp. 77–104.
  3. Brouard, O., Céréguino, R., Corbara, B., Leroy, C., Pélozuelo, L., Dejean, A. and Carrias, J. F. 2012. Understorey environments influence functional diversity in tank–bromeliad ecosystems. Freshwater Biology 57:815–823, available at: https://doi.org/10.1111/j.1365–2427.2012.02749.x.
  4. Carrias, J. F., Brouard, B., Leroy, C., Céréghini, R., Pélozuelo, L., Dejean, A. and Corbara, B. 2012. An ant–plant mutualism induces shifts in the protist community structure of a tank–bromeliad. Basic and Applied Ecology 13:698–705, available at: https://doi.org/10.1016/j.baae.2012.10.002.
  5. Carrias, J. F., Céréghino, R., Brouard, O., Pélozuelo, L., Dejean, A., Couté, A., Corbara, B. and Leroy, C. 2014. Two coexisting tank bromeliads host distinct algal communities on a tropical inselberg. Plant Biology 16:997–1004, available at: https://doi.org/10.1111/plb.12139.
  6. Coolen, W. A. and D’Herde, C. J. 1972. A method for the quantitative extraction of nematodes from plant tissue State. Merelbeke: Nematology and Entomology Research Station.
  7. Devetter, M. 2004. Invertebrate fauna of treeholes in relation to some habitat conditions in southern Bohemia (Czech Republic). Acta Societatis Zoologicae Bohemicae 68:161–168.
  8. Fränzle, O. 2006. Complex bioindication and environmental stress assessement. Ecological Indicators 6:114–136, doi: 10.1016/j.ecolind.2005.08.015.
  9. Goffredi, S. K., Kantor, A. H. and Woodside, W. T. 2011. Aquatic microbial habitats within a neotropical rainforest: bromeliads and pH–associated trends in bacterial diversity and composition. Microbial Ecology 61:529–542, doi: 10.1007/s00248–010–9781–8.
  10. Gossner, M. M., Lade, P., Rohland, A., Sichardt, N., Kahl, T., Bauhus, J., Weisser, W. W. and Petermann, J. S. 2016. Effects of management on aquatic tree–hole communities in temperate forests are mediated by detritus amount and water chemistry. The Journal of Animal Ecology 85:213–226, available at: https://doi.org/10.1111/1365–2656.12437.
  11. Hägerbäumer, A., Hoss, S., Heininger, P. and Traunspurger, W. 2015. Experimental studies with nematodes in ecotoxicology: an overview. Journal of Nematology 47:11–27.
  12. Khazan, E. S., Bright, E. G. and Beyer, J. E. 2015. Land management impacts on tree hole invertebrate communities in a Neotropical rainforest. Journal of Insect Conservation 19:681–690, doi: 10.1007/s10841-015-9791-4.
  13. Kitching, R. L. 2001. Food webs in phytotelmata: “bottom–up” and “top–down” explanations for community structure. Annual Review of Entomology 46:729–760, available at: https://doi.org/10.1146/annurev.ento.46.1.729.
  14. Kratina, P., Petermann, J. S., Marino, N. A. C., MacDonald, A. A. M. and Srivastava, D. S. 2017. Environmental control of the microfaunal community structure in tropical bromeliads. Ecology and Evolution 7:1627–1634, available at: https://doi.org/10.1002/ece3.2797.
  15. Leroy, C., Carrias, J. F., Céréghino, R. and Corbara, B. 2015. The contribution of microorganisms and metazoans to mineral nutrition in bromeliads. Journal of Plant Ecology 9:241–255, available at: https://doi.org/10.1093/jpe/rtv052.
  16. Lindenmayer, D., Barton, P. and Pierson, J. 2015. Indicators and surrogates of biodiversity and environmental change. Boca Raton: CRC Press.
  17. Louca, S., Jacques, S. M. S., Pires, A. P. F., Leal, J. S., González, A. L., Doebeli, M. and Farjalla, V. F. 2017. Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical condition. Environmental Microbiology 19:3132–3151, available at: https://doi.org/10.1111/1462–2920.13788.
  18. Louca, S., Jacques, S. M. S., Pires, A. P. F., Leal, J. S., Srivastava, D. S., Parfrey, L. W., Farjalla, V. F. and Doebeli, M. 2016. High taxonomic variability despite stable functional structure across microbial communities. Nature Ecology and Evolution 1:0015, available at: http://doi 10.1038/s41559–016–0015.
  19. Marino, N. A. C., Srivastava, D. S. and Farjalla, V. F. 2013. Aquatic macroinvertebrate community composition in tank–bromeliads is determined by bromeliad species and its constrained characteristics. Insect Conservation and Diversity 6:372–380, available at: https://doi.org/10.1111/j.1752–4598.2012.00224.x.
  20. Marino, N. A. C., Guariento, R. D., Dib, V., Azevedo, F. D. and Farjalla, V. F. 2011. Habitat size determine algae biomass in tank–bromeliads. Hydrobiologia 678:191–199, doi: 10.1007/s10750–011–0848–4.
  21. Moens, T., Traunspurger, W. and Bergtold, M. 2006. “Feeding ecology of free–living benthic nematodes”, In Abebe, E., Traunspurger, W. and Andrássy, I. (Eds), Freshwater Nematodes: Ecology and Taxonomy. Wallingford: CABI Publishing, pp. 105–130.
  22. Mummey, D. L., Stahla, P. D. and Buyerb, J. S. 2002. Microbial biomarkers as an indicator of ecosystem recovery following surface mine reclamation. Applied Soil Ecology 21:251–259.
  23. Porazinska, D. L., Giblin-Davis, R. M., Esquivel, A., Powers, T. O., Sung, W. and Thomas, W. K. 2010. Ecometagenetics confirms high tropical rainforest nematode diversity. Molecular Ecology 19:5521–5530.
  24. Ptatscheck, C. and Traunspurger, W. 2014. The meiofauna of artificial water–filled tree holes: colonization and bottom–up effects. Aquatic Ecology 48:285–295, available at: https://doi.org/10.1007/s10452–014–9483–2.
  25. Ptatscheck, C. and Traunspurger, W. 2015. Meio-and macrofaunal communities in artificial water-filled tree holes: effects of seasonality, physical and chemical parameters, and availability of food resources. PLoS ONE 10:e0133447, doi: 10.1371/journal.pone.0133447.
  26. Ptatscheck, C., Dümmer, B. and Traunspurger, W. 2015. Nematode colonisation of artificial water-filled tree holes. Nematology 17:911–921, doi: 10.1163/15685411-00002913.
  27. R Core Team 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, available at: https://www.r-project.org/.
  28. Richardson, B., Richardson, M. and González, G. 2018. Responses of two litter-based invertebrate communities to changes in canopy cover in a forest subject to hurricanes. Forests 9:309, available at: https://www.mdpi.com/1999-4907/9/6/309.
  29. Robaina, R. R., Souza, R. M., Gomes, V. M., Cardoso, D. O. and Almeida, A. M. 2015. Nematode trophic structure in phytotelmata of Canistropsis billbergioides and Nidularium procerum (Bromeliaceae) in the Atlantic Forest – variability in relation to climate variables and plant architecture. Nematoda 2:e162015, available at: http://dx.doi.org/10.4322/nematoda.01615.
  30. Rocha, C. F. D., Nunes-Freitas, A. F., Carvalho, L. C. and Rocha-Pessôa, T. C. 2004. Habitat disturbance in the Brazilian coastal sand dune vegetation and related richness and diversity of bromeliad species. Vidalia 2:49–55.
  31. Rocha, C. F. D., Bergallo, H. G., Van Sluys, M., Alves, M. A. S. and Jamel, C. E. 2007. The remnants of restinga habitats in the Brazilian Atlantic Forest of Rio de Janeiro state, Brazil: Habitat loss and risk of disappearance. Brazilian Journal of Biology 67:263–273, available at: http://dx.doi.org/10.1590/S1519–69842007000200011.
  32. Shah, V., Shah, S., Mackey, H., Kambhampati, M., Collins, D., Dowd, S. E., Colichio, R., McDonnell, K. T. and Green, T. 2013. Microbial community in the soil determines the forest recovery post-exposure to gamma irradiation. Environmental Science and Technology 47:11396–11142, available at: https://doi.org/10.1021/es400923k.
  33. Sun, S., Li, S., Avera, B. N., Strahm, B. D. and Badgley, B. D. 2017. Soil bacterial and fungal communities show distinct recovery patterns during forest ecosystem restoration. Applied and Environmental Microbiology l83:e00966–17, available at: https://doi .org/10.1128/AEM.00966-17.
  34. Verchot, L. V. 2010. “Impacts of forest conversion to agriculture on microbial communities and microbial function”, In Dion, P. (Ed.), Soil Biology and Agriculture in the Tropics. Berlin: Springer-Verlag, pp. 45–63.
  35. Wilson, M. and Kakouli-Duarte, T. 2009. Nematodes as environmental indicators. Wallingford: CABI Publishing.
  36. Yanoviak, S. P., Paredes, J. E. R., Lounibos, L. P. and Weaver, S. C. 2006. Deflorestation alters phytotelmata habitat availability and mosquito production in the Peruvian Amazon. Ecological Applications 16:1854–1864, available at: https://doi.org/10.1890/1051-0761(2006)016[1854:DAPHAA]2.0.CO;2.
  37. Yeates, G. W. 2003. Nematodes as soil indicators: functional and biodiversity aspects. Biology and Fertility of Soils 37:199–210.
  38. Zotz, G. and Traunspurger, W. 2016. What’s in the tank? Nematodes and other major components of the meiofauna of bromeliad phytotelms in lowland Panama. BMC Ecology 16, available at: https://bmcecol.biomedcentral.com/articles/10.1186/s12898-016-0069-9.
DOI: https://doi.org/10.21307/jofnem-2020-101 | Journal eISSN: 2640-396X | Journal ISSN: 0022-300X
Language: English
Page range: 1 - 10
Published on: Nov 10, 2020
Published by: Society of Nematologists, Inc.
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Alexandre Macedo Almeida, Janeo Eustáquio Almeida Filho, Ricardo Moreira Souza, published by Society of Nematologists, Inc.
This work is licensed under the Creative Commons Attribution 4.0 License.