References
- Almeida, A. M. and Souza, R. M. 2020. Nematode trophic structure in the phytotelma of Neoregelia cruenta (Bromeliaceae) in relation to microenvironmental and climate variables. Journal of Nematology (In Press).
- Balsamo, M., Semprucci, F., Frontalini, F. and Coccioni, R. 2012. “Meiofauna as a tool for marine ecosystem biomonitoring”, In Cruzado, A. (Ed.), Marine Ecosystems. Rijeka: InTech, pp. 77–104.
- Brouard, O., Céréguino, R., Corbara, B., Leroy, C., Pélozuelo, L., Dejean, A. and Carrias, J. F. 2012. Understorey environments influence functional diversity in tank–bromeliad ecosystems. Freshwater Biology 57:815–823, available at: https://doi.org/10.1111/j.1365–2427.2012.02749.x.
- Carrias, J. F., Brouard, B., Leroy, C., Céréghini, R., Pélozuelo, L., Dejean, A. and Corbara, B. 2012. An ant–plant mutualism induces shifts in the protist community structure of a tank–bromeliad. Basic and Applied Ecology 13:698–705, available at: https://doi.org/10.1016/j.baae.2012.10.002.
- Carrias, J. F., Céréghino, R., Brouard, O., Pélozuelo, L., Dejean, A., Couté, A., Corbara, B. and Leroy, C. 2014. Two coexisting tank bromeliads host distinct algal communities on a tropical inselberg. Plant Biology 16:997–1004, available at: https://doi.org/10.1111/plb.12139.
- Coolen, W. A. and D’Herde, C. J. 1972. A method for the quantitative extraction of nematodes from plant tissue State. Merelbeke: Nematology and Entomology Research Station.
- Devetter, M. 2004. Invertebrate fauna of treeholes in relation to some habitat conditions in southern Bohemia (Czech Republic). Acta Societatis Zoologicae Bohemicae 68:161–168.
- Fränzle, O. 2006. Complex bioindication and environmental stress assessement. Ecological Indicators 6:114–136, doi: 10.1016/j.ecolind.2005.08.015.
- Goffredi, S. K., Kantor, A. H. and Woodside, W. T. 2011. Aquatic microbial habitats within a neotropical rainforest: bromeliads and pH–associated trends in bacterial diversity and composition. Microbial Ecology 61:529–542, doi: 10.1007/s00248–010–9781–8.
- Gossner, M. M., Lade, P., Rohland, A., Sichardt, N., Kahl, T., Bauhus, J., Weisser, W. W. and Petermann, J. S. 2016. Effects of management on aquatic tree–hole communities in temperate forests are mediated by detritus amount and water chemistry. The Journal of Animal Ecology 85:213–226, available at: https://doi.org/10.1111/1365–2656.12437.
- Hägerbäumer, A., Hoss, S., Heininger, P. and Traunspurger, W. 2015. Experimental studies with nematodes in ecotoxicology: an overview. Journal of Nematology 47:11–27.
- Khazan, E. S., Bright, E. G. and Beyer, J. E. 2015. Land management impacts on tree hole invertebrate communities in a Neotropical rainforest. Journal of Insect Conservation 19:681–690, doi: 10.1007/s10841-015-9791-4.
- Kitching, R. L. 2001. Food webs in phytotelmata: “bottom–up” and “top–down” explanations for community structure. Annual Review of Entomology 46:729–760, available at: https://doi.org/10.1146/annurev.ento.46.1.729.
- Kratina, P., Petermann, J. S., Marino, N. A. C., MacDonald, A. A. M. and Srivastava, D. S. 2017. Environmental control of the microfaunal community structure in tropical bromeliads. Ecology and Evolution 7:1627–1634, available at: https://doi.org/10.1002/ece3.2797.
- Leroy, C., Carrias, J. F., Céréghino, R. and Corbara, B. 2015. The contribution of microorganisms and metazoans to mineral nutrition in bromeliads. Journal of Plant Ecology 9:241–255, available at: https://doi.org/10.1093/jpe/rtv052.
- Lindenmayer, D., Barton, P. and Pierson, J. 2015. Indicators and surrogates of biodiversity and environmental change. Boca Raton: CRC Press.
- Louca, S., Jacques, S. M. S., Pires, A. P. F., Leal, J. S., González, A. L., Doebeli, M. and Farjalla, V. F. 2017. Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical condition. Environmental Microbiology 19:3132–3151, available at: https://doi.org/10.1111/1462–2920.13788.
- Louca, S., Jacques, S. M. S., Pires, A. P. F., Leal, J. S., Srivastava, D. S., Parfrey, L. W., Farjalla, V. F. and Doebeli, M. 2016. High taxonomic variability despite stable functional structure across microbial communities. Nature Ecology and Evolution 1:0015, available at: http://doi 10.1038/s41559–016–0015.
- Marino, N. A. C., Srivastava, D. S. and Farjalla, V. F. 2013. Aquatic macroinvertebrate community composition in tank–bromeliads is determined by bromeliad species and its constrained characteristics. Insect Conservation and Diversity 6:372–380, available at: https://doi.org/10.1111/j.1752–4598.2012.00224.x.
- Marino, N. A. C., Guariento, R. D., Dib, V., Azevedo, F. D. and Farjalla, V. F. 2011. Habitat size determine algae biomass in tank–bromeliads. Hydrobiologia 678:191–199, doi: 10.1007/s10750–011–0848–4.
- Moens, T., Traunspurger, W. and Bergtold, M. 2006. “Feeding ecology of free–living benthic nematodes”, In Abebe, E., Traunspurger, W. and Andrássy, I. (Eds), Freshwater Nematodes: Ecology and Taxonomy. Wallingford: CABI Publishing, pp. 105–130.
- Mummey, D. L., Stahla, P. D. and Buyerb, J. S. 2002. Microbial biomarkers as an indicator of ecosystem recovery following surface mine reclamation. Applied Soil Ecology 21:251–259.
- Porazinska, D. L., Giblin-Davis, R. M., Esquivel, A., Powers, T. O., Sung, W. and Thomas, W. K. 2010. Ecometagenetics confirms high tropical rainforest nematode diversity. Molecular Ecology 19:5521–5530.
- Ptatscheck, C. and Traunspurger, W. 2014. The meiofauna of artificial water–filled tree holes: colonization and bottom–up effects. Aquatic Ecology 48:285–295, available at: https://doi.org/10.1007/s10452–014–9483–2.
- Ptatscheck, C. and Traunspurger, W. 2015. Meio-and macrofaunal communities in artificial water-filled tree holes: effects of seasonality, physical and chemical parameters, and availability of food resources. PLoS ONE 10:e0133447, doi: 10.1371/journal.pone.0133447.
- Ptatscheck, C., Dümmer, B. and Traunspurger, W. 2015. Nematode colonisation of artificial water-filled tree holes. Nematology 17:911–921, doi: 10.1163/15685411-00002913.
- R Core Team 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, available at: https://www.r-project.org/.
- Richardson, B., Richardson, M. and González, G. 2018. Responses of two litter-based invertebrate communities to changes in canopy cover in a forest subject to hurricanes. Forests 9:309, available at: https://www.mdpi.com/1999-4907/9/6/309.
- Robaina, R. R., Souza, R. M., Gomes, V. M., Cardoso, D. O. and Almeida, A. M. 2015. Nematode trophic structure in phytotelmata of Canistropsis billbergioides and Nidularium procerum (Bromeliaceae) in the Atlantic Forest – variability in relation to climate variables and plant architecture. Nematoda 2:e162015, available at: http://dx.doi.org/10.4322/nematoda.01615.
- Rocha, C. F. D., Nunes-Freitas, A. F., Carvalho, L. C. and Rocha-Pessôa, T. C. 2004. Habitat disturbance in the Brazilian coastal sand dune vegetation and related richness and diversity of bromeliad species. Vidalia 2:49–55.
- Rocha, C. F. D., Bergallo, H. G., Van Sluys, M., Alves, M. A. S. and Jamel, C. E. 2007. The remnants of restinga habitats in the Brazilian Atlantic Forest of Rio de Janeiro state, Brazil: Habitat loss and risk of disappearance. Brazilian Journal of Biology 67:263–273, available at: http://dx.doi.org/10.1590/S1519–69842007000200011.
- Shah, V., Shah, S., Mackey, H., Kambhampati, M., Collins, D., Dowd, S. E., Colichio, R., McDonnell, K. T. and Green, T. 2013. Microbial community in the soil determines the forest recovery post-exposure to gamma irradiation. Environmental Science and Technology 47:11396–11142, available at: https://doi.org/10.1021/es400923k.
- Sun, S., Li, S., Avera, B. N., Strahm, B. D. and Badgley, B. D. 2017. Soil bacterial and fungal communities show distinct recovery patterns during forest ecosystem restoration. Applied and Environmental Microbiology l83:e00966–17, available at: https://doi .org/10.1128/AEM.00966-17.
- Verchot, L. V. 2010. “Impacts of forest conversion to agriculture on microbial communities and microbial function”, In Dion, P. (Ed.), Soil Biology and Agriculture in the Tropics. Berlin: Springer-Verlag, pp. 45–63.
- Wilson, M. and Kakouli-Duarte, T. 2009. Nematodes as environmental indicators. Wallingford: CABI Publishing.
- Yanoviak, S. P., Paredes, J. E. R., Lounibos, L. P. and Weaver, S. C. 2006. Deflorestation alters phytotelmata habitat availability and mosquito production in the Peruvian Amazon. Ecological Applications 16:1854–1864, available at: https://doi.org/10.1890/1051-0761(2006)016[1854:DAPHAA]2.0.CO;2.
- Yeates, G. W. 2003. Nematodes as soil indicators: functional and biodiversity aspects. Biology and Fertility of Soils 37:199–210.
- Zotz, G. and Traunspurger, W. 2016. What’s in the tank? Nematodes and other major components of the meiofauna of bromeliad phytotelms in lowland Panama. BMC Ecology 16, available at: https://bmcecol.biomedcentral.com/articles/10.1186/s12898-016-0069-9.