BenelliG., JeffriesC. L. and WalkerT.2016. Biological control of mosquito vectors: past, present, and future. Insects7:52, doi: 10.3390/insects7040052.519820027706105
BhattS., GethingP. W., BradyO. J., MessinaJ. P., FarlowA. W., MoyesC. L., DrakeJ. M., BrownsteinJ. S., HoenA. G., SankohO., MyersM. F., GeorgeD. B., JaenischT., WintG. R. W., SimmonsC. P., ScottT. W., FarrarJ. J. and HayS. I.2013. The global distribution and burden of dengue. Nature. 49:504–7, doi: 10.1038/nature12060.365199323563266
CalzolariM.2016. Mosquito-borne diseases in Europe: an emerging public threat. Reports in parasitology5:1–12, available at:https://doi.org/10.2147/RIP.S56780.
CardosoD. O., GomesV. M., DolinskiC., SouzaR. M. and IdalinoW. S. S.2016. Efficacy of Heterorhabditis indica LPP35 against Aedes aegypti larvae in human-generated containers and bromeliads. Nematoda Vol. 3available at:http://dx.doi.org/10.4322/nematoda.01715.10.4322/nematoda.01715
ChaudharyM. Z., MajeedM., TayyibM., JavedN., FarzandA., MoosaA., ShehzadM. and MushtaqF.2017. Antagonistic potential of Steinernema kraussei and Heterorhabditis bacteriophora against dengue fever mosquito Aedes aegypti. Journal of Entomology and Zoology Studies5:865–9.
DaadR. H.1971. Size limitations on the infectibility of mosquito larvae by nematodes during filter-feeding. Journal of Invertebrate Pathology18:246–71.10.1016/0022-2011(71)90152-25092842
DilipkumarA., RamalingamK. R., ChinnaperumalK., GovindasamyB., ParamasivamD., DhayalanA. and PachiappanP.2019. Isolation and growth inhibition potential of entomopathogenic nematodes against three public health important mosquito vectors. Experimental Parasitology197:76–84, available at:https://doi.org/10.1016/j.exppara.2018.11.00130414843
GauglerR., KaplanB., AlvaradoC., MontoyaJ. and OrtegaM.1983. Assessment of Bacillus thuringiensis serotype 14 and Steinernema feltiae (Nematoda: Steinernematidae) for control of the Simulium vectors of onchocercasis in Mexico. Entomophaga28:309–15.10.1007/BF02372182
HahnM. B., EisenR. J., EisenL., BoeglerK. A., MooreC. G., McAllisterJ., SavageH. M. and MutebiJ.-P.2016. Reported distribution of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus in the United States, 1995–2016 (Diptera: Culicidae). Journal of Medical Entomology53:1169–75, available at:https://doi.org/10.1093/jme/tjw072937985827282817
HuangY.-J. S., HiggsS. and VanlandinghamD. L.2017. Biological control strategies for mosquito vectors of arboviruses. Insects8:21, doi: 10.3390/insects8010021.537194928208639
MoltaN. B. and HominickW. M.1989. Dose- and time-response assessments of Heterorhabitis heliothidis and Steinernema feltiae (Nem.: Rhabitida) against Aedes aegpytii larvae. Entomophaga34:485–93.
MoyesC. L., VontasJ., MartinsA. J., NgL. C., KoouS. Y., DusfourI., RaghavendraK., PintoJ., CorbelV., DavidJ.-P. and WeetmanD.2017. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negleted Tropical Diseases11(7), available at:https://doi.org/10.1371/journal.pntd.0005625.
PoinarG. O.Jr and KaulH. N.1982. Parasitism of the mosquito Culex pipiens by the nematode Heterorhabditis bacteriophora. Journal of Invertebrate Pathology39:382–7.10.1016/0022-2011(82)90063-5
PowellJ. R. and TabachnickW. J.2013. History of domestication and spread of Aedes aegypti – a review. Memórias do Instituto Oswaldo Cruz108:11–17, doi: 10.1590/0074-0276130395.410917524473798
RobainaR. R., SouzaR. M., GomesV. M., CardosoD. O. and AlmeidaA. M.2015. Nematode trophic structure in phytotelmata of Canistropsis billbergioides and Nidularium procerum (Bromeliaceae) in the Atlantic Forest – variability in relation to climate variables and plant architecture. Nematoda Vol. 2available at:http://dx.doi.org/10.4322/nematoda.01615.10.4322/nematoda.01615
RoizD., WilsonA. L., ScottT. W., FonsecaD. M., JourdainF., MüllerP., VelayudhanR. and CorbelV.2018. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Neglected Tropical Diseases12(12), available at:https://doi.org/10.1371/journal.pntd.0006845.
Shapiro-IlanD. and DolinskiC.2015. Entomopathogenic nematode application technology. Pp. 231–254inRachelCampos-Herrera (Ed). Nematode Pathogenesis of Insects and Other Pests. Heidelberg, Springer International Publishing.10.1007/978-3-319-18266-7_9
ToksozS. and SaruhanI.2018. Efficacy of entomopathogenic nematode isolates from Turkey and Kyrgyzstan against the larvae of the mosquito species Culex pipiens L. (Diptera: Culicidae) under laboratory conditions. Egyptian Journal of Biological Pest Control28:84available at:https://doi.org/10.1186/s41938-018-0088-2.
UlvedalC., BertolottiM. A., CagnoloS. R. and AlmirónW. A.2017. Ensayos de sensibilidad de larvas de Aedes aegypti y Culex quinquefasciatus frente al nematodo Heterorhabditis bacteriophora en condiciones de laboratório. Biomédica37:67–76, available at:https://doi.org/10.7705/biomedica.v34i2.3470.
ZohdyN. M., ShamseldeanM. M., Abd-El-SamieE. M. and HamamaH. M.2013. Efficacy of the steinernematid and heterorhabditid nematodes for controlling the mosquito, Culex quinquefasciatus (Diptera: Culicidae). Journal of Mosquito Research3:33–44, doi: 105376/jmr.2013.03.0005.