Have a personal or library account? Click to login

Efficacy of Heterorhabdits indica LPP35 against Aedes aegypti in domiciliary oviposition sites

Open Access
|Jul 2019

References

  1. Achee N. L. , Grieco J. P. , Vatandoost H. , Seixas G. , Pinto J. , Ching-NG L. , Martins A. J. , Juntarajumnong W. , Corbel V. , Gouagna C. , David J.-P. , Logan J. G. , Orsborne J. , Marois E. , Devine G. J. and Vontas J. 2019. Alternative strategies for mosquito-borne arbovirus control. PLoS Neglected Tropical Diseases 13(1), available at: https://doi.org/10.1371/journal.pntd.0006822.
  2. Anonymous . 2019. Dengue and severe dengue. World Health Organization, Geneva, available at: www.who.int/en/news-room/fact-sheets/detail/dengue-and-severe-dengue.
  3. Benelli G. , Jeffries C. L. and Walker T. 2016. Biological control of mosquito vectors: past, present, and future. Insects 7:52, doi: 10.3390/insects7040052.519820027706105
  4. Bhatt S. , Gething P. W. , Brady O. J. , Messina J. P. , Farlow A. W. , Moyes C. L. , Drake J. M. , Brownstein J. S. , Hoen A. G. , Sankoh O. , Myers M. F. , George D. B. , Jaenisch T. , Wint G. R. W. , Simmons C. P. , Scott T. W. , Farrar J. J. and Hay S. I. 2013. The global distribution and burden of dengue. Nature. 49:5047, doi: 10.1038/nature12060.365199323563266
  5. Calzolari M. 2016. Mosquito-borne diseases in Europe: an emerging public threat. Reports in parasitology 5:112, available at: https://doi.org/10.2147/RIP.S56780.
  6. Cardoso D. O. , Gomes V. M. , Dolinski C. and Souza R. M. 2015. Potential of entomopathogenic nematodes as biocontrol agents of immature stages of Aedes aegypti Nematoda Vol. 2 available at: http://dx.doi.org/10.4322/nematoda.09015. 10.4322/nematoda.09015
  7. Cardoso D. O. , Gomes V. M. , Dolinski C. , Souza R. M. and Idalino W. S. S. 2016. Efficacy of Heterorhabditis indica LPP35 against Aedes aegypti larvae in human-generated containers and bromeliads. Nematoda Vol. 3 available at: http://dx.doi.org/10.4322/nematoda.01715. 10.4322/nematoda.01715
  8. Chaudhary M. Z. , Majeed M. , Tayyib M. , Javed N. , Farzand A. , Moosa A. , Shehzad M. and Mushtaq F. 2017. Antagonistic potential of Steinernema kraussei and Heterorhabditis bacteriophora against dengue fever mosquito Aedes aegypti . Journal of Entomology and Zoology Studies 5:8659.
  9. Daad R. H. 1971. Size limitations on the infectibility of mosquito larvae by nematodes during filter-feeding. Journal of Invertebrate Pathology 18:24671.10.1016/0022-2011(71)90152-25092842
  10. Dilipkumar A. , Ramalingam K. R. , Chinnaperumal K. , Govindasamy B. , Paramasivam D. , Dhayalan A. and Pachiappan P. 2019. Isolation and growth inhibition potential of entomopathogenic nematodes against three public health important mosquito vectors. Experimental Parasitology 197:7684, available at: https://doi.org/10.1016/j.exppara.2018.11.001 30414843
  11. Finney J. R. and Harding J. B. 1981. Some factors affecting the use of Neoaplectana sp. for mosquito control. Mosquito News 41:798800.
  12. Gaugler R. , Kaplan B. , Alvarado C. , Montoya J. and Ortega M. 1983. Assessment of Bacillus thuringiensis serotype 14 and Steinernema feltiae (Nematoda: Steinernematidae) for control of the Simulium vectors of onchocercasis in Mexico. Entomophaga 28:30915.10.1007/BF02372182
  13. Hahn M. B. , Eisen R. J. , Eisen L. , Boegler K. A. , Moore C. G. , McAllister J. , Savage H. M. and Mutebi J.-P. 2016. Reported distribution of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus in the United States, 1995–2016 (Diptera: Culicidae). Journal of Medical Entomology 53:116975, available at: https://doi.org/10.1093/jme/tjw072 937985827282817
  14. Horstick O. and Runge-Ranzinger S. 2018. Protection of the house against chagas disease, dengue, leishmaniasis, and lymphatic filariasis: a systematic review. The Lancet Infectious Diseases 18:e147e158, available at: http://dx.doi.org/10.1016/S1473-3099(17)30422-X 10.1016/S1473-3099(17)30422-X29074038
  15. Huang Y.-J. S. , Higgs S. and Vanlandingham D. L. 2017. Biological control strategies for mosquito vectors of arboviruses. Insects 8:21, doi: 10.3390/insects8010021.537194928208639
  16. Molta N. B. and Hominick W. M. 1989. Dose- and time-response assessments of Heterorhabitis heliothidis and Steinernema feltiae (Nem.: Rhabitida) against Aedes aegpytii larvae. Entomophaga 34:48593.
  17. Moyes C. L. , Vontas J. , Martins A. J. , Ng L. C. , Koou S. Y. , Dusfour I. , Raghavendra K. , Pinto J. , Corbel V. , David J.-P. and Weetman D. 2017. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negleted Tropical Diseases 11(7), available at: https://doi.org/10.1371/journal.pntd.0005625.
  18. Poinar G. O. Jr and Kaul H. N. 1982. Parasitism of the mosquito Culex pipiens by the nematode Heterorhabditis bacteriophora . Journal of Invertebrate Pathology 39:3827.10.1016/0022-2011(82)90063-5
  19. Powell J. R. and Tabachnick W. J. 2013. History of domestication and spread of Aedes aegypti – a review. Memórias do Instituto Oswaldo Cruz 108:1117, doi: 10.1590/0074-0276130395.410917524473798
  20. Ribeiro J. I. Jr 2001. Análises estatísticas no SAEG (Sistema para análises estatísticas Universidade Federal de Viçosa, Viçosa.
  21. Robaina R. R. , Souza R. M. , Gomes V. M. , Cardoso D. O. and Almeida A. M. 2015. Nematode trophic structure in phytotelmata of Canistropsis billbergioides and Nidularium procerum (Bromeliaceae) in the Atlantic Forest – variability in relation to climate variables and plant architecture. Nematoda Vol. 2 available at: http://dx.doi.org/10.4322/nematoda.01615. 10.4322/nematoda.01615
  22. Roiz D. , Wilson A. L. , Scott T. W. , Fonseca D. M. , Jourdain F. , Müller P. , Velayudhan R. and Corbel V. 2018. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Neglected Tropical Diseases 12(12), available at: https://doi.org/10.1371/journal.pntd.0006845.
  23. Shapiro-Ilan D. and Dolinski C. 2015. Entomopathogenic nematode application technology. Pp. 231254 in Rachel Campos-Herrera (Ed). Nematode Pathogenesis of Insects and Other Pests. Heidelberg, Springer International Publishing.10.1007/978-3-319-18266-7_9
  24. Toksoz S. and Saruhan I. 2018. Efficacy of entomopathogenic nematode isolates from Turkey and Kyrgyzstan against the larvae of the mosquito species Culex pipiens L. (Diptera: Culicidae) under laboratory conditions. Egyptian Journal of Biological Pest Control 28:84 available at: https://doi.org/10.1186/s41938-018-0088-2.
  25. Ulvedal C. , Bertolotti M. A. , Cagnolo S. R. and Almirón W. A. 2017. Ensayos de sensibilidad de larvas de Aedes aegypti y Culex quinquefasciatus frente al nematodo Heterorhabditis bacteriophora en condiciones de laboratório. Biomédica 37:6776, available at: https://doi.org/10.7705/biomedica.v34i2.3470.
  26. Zohdy N. M. , Shamseldean M. M. , Abd-El-Samie E. M. and Hamama H. M. 2013. Efficacy of the steinernematid and heterorhabditid nematodes for controlling the mosquito, Culex quinquefasciatus (Diptera: Culicidae). Journal of Mosquito Research 3:3344, doi: 105376/jmr.2013.03.0005.
DOI: https://doi.org/10.21307/jofnem-2019-050 | Journal eISSN: 2640-396X | Journal ISSN: 0022-300X
Language: English
Page range: 1 - 7
Submitted on: May 1, 2019
Published on: Jul 23, 2019
Published by: Society of Nematologists, Inc.
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Bruna Silva, Alexandre M. Almeida, Claudia Dolinski, Ricardo M. Souza, published by Society of Nematologists, Inc.
This work is licensed under the Creative Commons Attribution 4.0 License.