Have a personal or library account? Click to login
A face-machine interface utilizing EEG artifacts from a neuroheadset for simulated wheelchair control Cover

A face-machine interface utilizing EEG artifacts from a neuroheadset for simulated wheelchair control

Open Access
|Jul 2021

References

  1. Abdulkader, S. N., Atia, A. and Mostafa, M. M. 2015. Brain computer interface: applications and challenges. Egyptian Informativs Journal 16: 213–230.
  2. Amiri, S., Fazel-Rezai, R. and Asadpour, V. 2013. A review of hybrid brain-computer interface systems. Advances in Human-Computer Interaction 2013: 1–9.
  3. BenTaher, F., BenAmor, N. and Jallouli, M. 2015. A multimodal wheelchair control system based on EEG signals and eye tracking fusion International Symposium on Innovations in Intelligent SysTems and Applications (INISTA), Madrid, Spain, 2015, pp. 1–8.
  4. Brunner, C., Blankertz, B., Cincotti, F., Kübler, A., Mattia, D., Miralles, F., Nijholt, A., Otal, B., Salomon, P. and Müller-Putz, G. R. 2014. BNCI Horizon 2020 – “Towards a roadmap for brain/neural computer interaction.” In Stephanidis, C. and Antona, M. (Eds), Universal Access in Human-computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014. Lecture notes in computer science, Vol. 8513. Springer, Greece.
  5. Chamola, V., Vineet, A., Nayyar, A. and Hossain, E. 2020. Brain-computer interface-based humanoid control: a review. Sensors 20: 3620.
  6. Chu, T. S., Chua, A. and Secco, E. 2020. A wearable MYO gesture armband controlling sphero BB-8 Robot. High Tech and Innovation Journal 1: 1–8.
  7. He, S., Zhou, Y., Yu, T., Zhang, R., Huang, Q., Chuai, L., Mustafa, M. U., Gu, Z., Yu, Z. L., Tan, H. and Li, Y. 2020. EEG- and EOG-based asynchronous hybrid BCI: a system integrating a speller, a web browser, an e-mail client, and a file explorer. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28: 519–530.
  8. Hernandez-Ossa, K. A., Montenegro-Couto, E. H., Longo, B., Bissoli, A., Sime, M. M., Lessa, H. M., Enriquez, I. R., Frizera-Neto, A. and Bastos-Filho, T. 2020. Simulation system of electric-powered wheelchairs for training purposes. Sensors 20: 3565.
  9. Hernandez-Ossa, K. A., Longo, B., Montenegro-Couto, E., Romero-Laiseca, M. A., Frizera-Neto, A. and Bastos-Filho, T. 2017. Development and pilot test of a virtual reality system for electric powered wheelchair simulation IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, pp. 2355–2360.
  10. Jang, G., Kim, J., Lee, S. and Choi, S. 2016. EMG-based continuous control scheme with simple classifier for electric-powered wheelchair. IEEE Transactions on Industrial Electronics 63: 3695–3705.
  11. Long, J., Li, Y., Wang, H., Yu, T., Pan, J. and Li, F. 2012. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair. IEEE Transactions on Neural Systems and Rehabilitation Engineering 20: 720–729.
  12. Nicolas-Alonso, L. F. and GomezGil, J. 2012. Brain computer interfaces: a review. Sensors 12: 1211–1279.
  13. Pirani, Z., Momin, A., Kadri, A. and Shaikh, A. 2018. Survey of numerous accessible applications for paralysis patients 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, pp. 1965–1969.
  14. Punsawad, Y., Wongsawat, Y. and Parnichkun, M. 2010. Hybrid EEG-EOG brain-computer interface system for practical machine control Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, pp. 1360–1363.
  15. Tello, R. J. M. G., Bissoli, A. L. C., Ferrara, F., Müller, S., Ferreira, A. and Bastos-Filho, T. F. 2015. Development of a human machine interface for control of robotic wheelchair and smart environment. IFAC-Papers Online 48: 136–141.
  16. Routhier, F., Archambault, P. S., Choukou, M. A., Giesbrecht, E., Lettre, J. and Miller, W. C. 2018. Barriers and facilitators of integrating the miWe immersive wheelchair simulator as a clinical tool for training powered wheelchair-driving skills. Annals of Physical and Rehabilitation Medicine 61: e91.
  17. Sarabu, A. and Santra, A. K. 2021. Human action recognition in videos using convolution long short-term memory network with spatio-temporal networks. Emerging Science Journal 5: 1–9.
  18. Šumak, B., Špindler, M., Debeljak, M., Heričko, M. and Pušnik, M. 2019. An empirical evaluation of a hands-free computer interaction for users with motor disabilities. Journal of Biomedical Informatics 96: 1–16.
  19. Tang, J., Liu, Y., Hu, D. and Zhou, Z. 2018. Towards BCI-actuated smart wheelchair system. Biomedical Engineering Online 17: 111.
  20. Yang, J., Su, X., Bai, D., Jiang, Y. and Yokoi, H. 2016. Hybrid EEG-EOG system for intelligent prosthesis control based on common spatial pattern algorithmIEEE International Conference on Information and Automation (ICIA), Ningbo, China, pp. 1261–1266.
  21. Yulianto, E., Indrato, T. W., Nugraha, B. T. M. and Suharyati, S. 2020. Wheelchair for Quadriplegic patient with electromyography signal control wireless. International Journal of Online and Biomedical Engineering 16: 94–115.
Language: English
Page range: 1 - 10
Submitted on: Apr 15, 2021
Published on: Jul 28, 2021
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Theerat Saichoo, Poonpong Boonbrahm, Yunyong Punsawad, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.