Have a personal or library account? Click to login
Comparative study of Kalman filter-based target motion analysis by incorporating Doppler frequency measurements Cover

Comparative study of Kalman filter-based target motion analysis by incorporating Doppler frequency measurements

Open Access
|Apr 2021

References

  1. Alexopoulos, A., Kandil, A., Orzechowski, P. and Badreddin, E. 2013. “A Comparative Study of Collision Avoidance Techniques for Unmanned Aerial Vehicles,” in 2013 IEEE International Conference on Systems, Man, and Cybernetics, October, pp. 1969–1974, doi: 10.1109/SMC.2013.338.
  2. Al-Hourani, A., Evans, R. J., Farrell, P. M., Moran, B., Martorella, M., Kandeepan, S., Skafidas, S. and Parampalli, U. 2018. “Chapter 7 -Millimeter-wave integrated radar systems and techniques”, In Chellappa, R. and Theodoridis, S. (Eds), Academic Press Library in Signal Processing, Vol. 7 Academic Press, San Diego, January pp. 317–363, doi: 10.1016/B978-0-12-811887-0.00007-9.
  3. Arasaratnam, I. and Haykin, S. 2009. “Cubature Kalman Filters,” IEEE Transactions on Automatic Control 54(6): 1254–1269, doi: 10.1109/TAC.2009.2019800.
  4. Arulampalam, S. 2000. “A Comparison of Recursive Style Angle-Only Target Motion Analysis Algorithms,” ELECTRONICS RESEARCH LAB SALISBURY (AUSTRALIA), DSTO-TR-0917, January, Available at: https://apps.dtic.mil/docs/citations/ADA376954 (Accessed September 15, 2019).
  5. Arulampalam, S., Badriasl, L. and Ristic, B. 2020. “A Closed-Form Estimator for Bearings-Only Fusion of Heterogeneous Passive Sensors,” IEEE Transactions on Signal Processing 68: 6681–6695, doi: 10.1109/TSP.2020.3035289.
  6. Bar-Shalom, Y. and Li, X-. R. 2001. Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software John Wiley & Sons, Inc, New York, NY.
  7. Becker, K. 1993. “Simple linear theory approach to TMA observability,” IEEE Transactions on Aerospace and Electronic Systems 29(2): 575–578, doi: 10.1109/7.210096.
  8. Ciaparrone, G., Sánchez, F. L., Tabik, S., Troiano, L., Tagliaferri, R. and Herrera, F. 2020. “Deep Learning in Video Multi-Object Tracking: A Survey,” Neurocomputing 381: 61–88, doi: 10.1016/j.neucom.2019.11.023 arXiv: 1907.12740.
  9. Do˘gançay, K. 2015. “3D Pseudolinear Target Motion Analysis From Angle Measurements,” IEEE Transactions on Signal Processing 63(6): 1570–1580, doi: 10.1109/TSP.2015.2399869.
  10. Fogel, E. and Gavish, M. 1988. “Nth-order dynamics target observability from angle measurements,” IEEE Transactions on Aerospace and Electronic Systems 24(3): 305–308, doi: 10.1109/7.192098.
  11. Hammel, S. E. and Aidala, V. J. 1985. “Observability Requirements for Three-Dimensional Tracking via Angle Measurements,” IEEE Transactions on Aerospace and Electronic Systems AES-21(2): 200–207, doi: 10.1109/TAES.1985.310617.
  12. Hügler, P., Roos, F., Schartel, M., Geiger, M. and Waldschmidt, C. 2018. “Radar Taking Off: New Capabilities for UAVs,” IEEE Microwave Magazine 19(7): 43–53, doi: 10.1109/MMM.2018.2862558.
  13. Jang, B. and Kim, H. 2019. “Indoor Positioning Technologies Without Offline Fingerprinting Map: A Survey,” IEEE Communications Surveys Tutorials 21(1): 508–525, doi: 10.1109/COMST.2018.2867935.
  14. Jauffret, C. and Pillon, D. 1989. “New Observability Criterion in Target Motion Analysis,” In Chan, Y. T. (Ed.), Underwater Acoustic Data Processing, ser NATO ASI Series Springer Netherlands, Dordrecht, pp. 479–484, doi: 10.1007/978-94-009-2289-1_53.
  15. Jauffret, C. and Pillon, D. 1996. “Observability in passive target motion analysis,” IEEE Transactions on Aerospace and Electronic Systems 32(4): 1290–1300, doi: 10.1109/7.543850.
  16. Jauffret, C. and Pérez, A. 2018. “Efficient Pseudolinear Estimation for Bearings and Frequencies Target Motion Analysis,” 2018 21st International Conference on Information Fusion (FUSION), July. pp. 2556–2563, doi: 10.23919/ICIF.2018.8455271.
  17. Jauffret, C., Pérez, A. and Pillon, D. 2017. “Observability: Range-Only Versus Bearings-Only Target Motion Analysis When the Observer Maneuvers Smoothly,” IEEE Transactions on Aerospace and Electronic Systems 53(6): 2814–2832, doi: 10.1109/TAES.2017.2716438.
  18. Jin, F., Liu, K., Zhang, H., Ng, J. K. -Y., Guo, S., Lee, V. C. S. and Son, S. H. 2020. “Toward Scalable and Robust Indoor Tracking: Design, Implementation, and Evaluation,” IEEE Internet of Things Journal 7(2): 1192–1204, doi: 10.1109/JIOT.2019.2953376.
  19. Julier, S. J. and Uhlmann, J. K. 2004. “Unscented filtering and nonlinear estimation,” Proceedings of the IEEE 92(3): 401–422, doi: 10.1109/JPROC.2003.823141.
  20. Kalman, R. E. and Bucy, R. S. 1961. “New Results in Linear Filtering and Prediction Theory,” Journal of Basic Engineering 83(1): 95–108, doi: 10.1115/1.3658902.
  21. Kumar, A. S. A., George, B. and Mukhopadhyay, S. C. 2021. “Technologies and Applications of Angle Sensors: A Review,” IEEE Sensors Journal 21(6): 7195–7206, doi: 10.1109/JSEN.2020.3045461.
  22. Laneuville, D. 2013. “Polar versus Cartesian velocity models for maneuvering target tracking with IMM,” Aerospace Conference, 2013 IEEE, pp. 1–15, doi: 10.1109/AERO.2013.6497387.
  23. Lee, T. -J., Yi, D. -H. and Cho, D. -I. 2016. “A Monocular Vision Sensor-Based Obstacle Detection Algorithm for Autonomous Robots,” Sensors, doi: 10.3390/s16030311.
  24. Li, X. R. and Jilkov, V. P. 2003. “Survey of maneuvering target tracking. Part I. Dynamic models,” IEEE Transactions on Aerospace and Electronic Systems 39(4): 1333–1364, doi: 10.1109/TAES.2003.1261132.
  25. Li, Y., Sun, H., Liu, D., Xu, J. and Wang, M. 2019. “Autonomous Navigation and Path Tracking Control on Field Roads in Hilly Areas,” Journal of Sensors 2019: 6738594, Available at: https://www.hindawi.com/journals/js/2019/6738594/.
  26. Liu, J., Wang, Z. and Xu, M. 2020. “DeepMTT: A deep learning maneuvering target-tracking algorithm based on bidirectional LSTM network,” Information Fusion 53: 289–304, doi: 10.1016/j.inffus.2019.06.012.
  27. Luo, J., Han, Y. and Fan, L. 2018. “Underwater Acoustic Target Tracking: A Review,” Sensors 18(1): 112, doi: 10.3390/s18010112.
  28. Nardone, S. C. and Aidala, V. J. 1981. “Observability Criteria for Bearings-Only Target Motion Analysis,” IEEE Transactions on Aerospace and Electronic Systems AES-17(2): 162–166, doi: 10.1109/TAES.1981.309141.
  29. Passerieux, J. M., Pillon, D., Blanc-Benon, P. and Jaufret, C. 1988. “Target Motion Analysis With Bearings And Frequencies Measurements,” Twenty-Second Asilomar Conference on Signals, Systems and Computers, 1(October): 458–462, doi: 10.1109/ACSSC.1988.754037.
  30. Payne, A. N. 1989. “Observability problem for bearings-only tracking,” International Journal of Control 49(3): 761–768, doi: 10.1080/00207178908559665.
  31. Pham, H., Smolka, S. A., Stoller, S. D., Phan, D. and Yang, J. 2015. “A survey on unmanned aerial vehicle collision avoidance systems,” Available at: https://arxiv.org/abs/1508.07723 (accessed August 12, 2020).
  32. Pillon, D., Perez-Pignol, A. and Jauffret, C. 2016. “Observability: Range-only vs. bearings-only target motion analysis for a leg-by-leg observer’s trajectory,” IEEE Transactions on Aerospace and Electronic Systems 52(4): 1667–1678, doi: 10.1109/TAES.2016.150016.
  33. Piriyajitakonkij, M., Warin, P., Lakhan, P., Leelaarporn, P., Kumchaiseemak, N., Suwajanakorn, S., Pianpanit, T., Niparnan, N., Mukhopadhyay, S. C. and Wilaiprasitporn, T. 2020. “SleepPoseNet: Multi-View Learning for Sleep Postural Transition Recognition Using UWB,” IEEE Journal of Biomedical and Health Informatics 1–1, doi: 10.1109/JBHI.2020.3025900.
  34. Quan, L., Han, L., Zhou, B., Shen, S. and Gao, F. 2020. “Survey of UAV motion planning,” IET Cyber-systems and Robotics 2(1): 14–21, doi: 10.1049/iet-csr.2020.0004.
  35. Ristic, B., Arulampalm, S. and Gordon, N. 2004. Beyond the Kalman Filter Particle Filters for Tracking Applications Artech House, Boston, MA and London, Available at: https://trove.nla.gov.au/version/45133529 (Accessed September 11, 2019).
  36. Roth, M., Hendeby, G. and Gustafsson, F. 2014. “EKF/UKF maneuvering target tracking using coordinated turn models with polar/Cartesian velocity,” in 17th International Conference on Information Fusion (FUSION), July 7–10, pp. 1–8.
  37. Shensa, M. J. 1981. “On the uniqueness of Doppler tracking,” The Journal of the Acoustical Society of America 70(4): 1062–1064, doi: 10.1121/1.386550.
  38. Skaria, S., Al-Hourani, A. and Evans, R. J. 2020. “Deep-Learning Methods for Hand-Gesture Recognition Using Ultra-Wideband Radar,” IEEE Access 8: 203 580–203 590, doi: 10.1109/ACCESS.2020.3037062.
  39. Skaria, S., Al-Hourani, A., Lech, M. and Evans, R. J. 2019. “Hand-Gesture Recognition Using Two-Antenna Doppler Radar With Deep Convolutional Neural Networks,” IEEE Sensors Journal 19(8): 3041–3048, doi: 10.1109/JSEN.2019.2892073.
  40. Skolnik, M. 2001. Introduction to Radar Systems, ser. Electrical Engineering Series McGraw-Hill, Available at: https://books.google.com.au/books?id=Y6-APwAACAAJ.
  41. Walker, O., Vanegas, F., Gonzalez, F. and Koenig, S. 2019. A Deep Reinforcement Learning Framework for UAV Navigation in Indoor Environments,” 2019 IEEE Aerospace Conference, March, pp. 1–14. doi: 10.1109/AERO.2019.8742226.
Language: English
Page range: 1 - 12
Submitted on: Jan 25, 2021
Published on: Apr 28, 2021
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Ehsan Ul Haq, Hassan Arshad Nasir, Asif Iqbal, Muhammad Ali Qadir, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.