Bruins, M., Rahim, Z., Bos, A., Van De Sande, W. W. J., Endtz, H. Ph., and Van Belkum, A.. 2013. Diagnostic of active tuberculosis by e-nose analysis exhaled air. Tuberculosis 93 2: 232–238.
Charibaldi dan, N., and Harjoko, A.. 2013. Telaah Pustaka Ciri dan Metode – metode Mycobacterium Tuberculosis. Indonesia Journal of Electronics and Instrumentation Systems 3 1: 47–60.
Elly, M. I., Jatmiko, W., and Tjan, B.. 2013. Electrocardiogram for biometrics by using Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ): integrating feature extraction and classification. International Journal on Smart Sensing and Intelligent Systems 6 5: 1891–1016.
Fend, R., Kolk, A. H. J., Bessant, C., Buijtels, P., Klatser, P. R., and Woodman, A. C.. 2006. Prospects for clinical application of electronic-nose technology to early detection of mycobacterium tuberculosis in culture and Sputum. Journal of Clinical Microbiology 44 6: 2039–2045.
Gibson, T., Kolk, A., Reither, K., Kuipers, S., Hallam, V., Chandler, R., Dutta, R., Maboko, L., Jung, J., and Klatser, P.. 2009. Predictive detection of tuberculosis using electronic nose technology, CP1137, olafaction and electronic nose. Proceedings of the 13th International Symposium, April 15-17, Brescia: 473–474.
Hardoyono, F., Triyana, K., and Iswanto, B.H.. 2015. Rapid discrimination of Indonesian herbal medicines by using electronic nose base on array of commercial gas sensors. Applied Mechanics and Materials 771: 209–212.
Kolk, A. H. J., Hoelscher, M., Maboko, L., Jung, J., Kuiper, S., Cauchi, M., Bessant, C., Van Beers, S., Dutta, R., Gibson, T., and Reither, K.. 2010. Electronic-nose technology using sputum samples in diagnosis of patients with tuberculosis. Journal of Clinical Microbiology 48 11: 4235–4238.
Kusumoputro, B., Widyanto, MR., Fanany, MI., and Budiarto, H.. 1999. Improvement of artificial odor discriminant system using fuzzy-LVQ neural network. Proceeding of Third International Conference on Computational Intelligence and Multimedia Applications ICCIMA, September 23-26, New Delhi: 474–478.
Kusumoputro, B., and Jatmiko, W.. 2002. Recognition of odor mixture using fuzzy-LVQ neural networks with matrix similarity analysis. Proceeding of Asia Pacific Conference on Circuits and System APCCAS, October 28-31, Denpasar: 57–62.
Kusumoputro, B., Jatmiko, W., and Krisnadhi, AA.. 2002. Sistem Penciuman Elektronik Menggunakan Algoritma FLVQ dan Analisa Matriks Similaritas untuk Mengenal Aroma Campuran. Prosiding Ilmu Komputer dan Teknologi Informasi 3 1: 246–250.
Maysam, J., and Mahdi, M.. 2016. Comparison of predictive models for the early diagnosis of diabetes. Healthcare Informatics Research, April 2: 95–100.
Pavlou, A. K., Magan, N., Jones, J. M., Brown, J., Klatser, P., and Turner, A. P. F.. 2004. Detection of Mycobacterium Tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system. Biosensor and Bioelectronics 20, 3: 538–544.
Phillips, M., Basa-Dalay, V., Bothamley, G., Cataneo, R. N., Lam, P. K., Natividad, M. P. R., Schmitt, P., and Wai, J.. 2010. Breath biomarkers of active pulmonary tuberculosis. Tuberculosis 90 2: 145–154.
Polikar, R., Shinar, R., Honavar, V., Udpa, L., and Porter, M. D.. 2001. Detection and identification of odorants using an electronic nose. IEEE 5: 3137–3140.
Wang, Y., and Liu, L.. 2014. New intelligent classification method based on improved MEB algorithm. International Journal on Smart Sensing and Intelligent Systems 7 1: 72–95.
Zhou, L., He, X., He, D., Wang, K., and Qin, D.. 2011. Biosensing technologies for mycobacterium tuberculosis detection: status and new development. Clinical and Developmental Immunology 2011 1: 1–8.