Have a personal or library account? Click to login
Open Access
|Apr 2018

Figures & Tables

Figure 1

An HGA-FLVQ Model Block Diagram.
An HGA-FLVQ Model Block Diagram.

Figure 2

A Cycle of Gas Sensor (TGS) Response in an E-nose Device.
A Cycle of Gas Sensor (TGS) Response in an E-nose Device.

Figure 3

Error Value Decrease in HGA-FLVQ Model Training using TGS813 Sensor Data.
Error Value Decrease in HGA-FLVQ Model Training using TGS813 Sensor Data.

Figure 4

Error Value Decrease in HGA-FLVQ Model Training using TGS822 Sensor Data.
Error Value Decrease in HGA-FLVQ Model Training using TGS822 Sensor Data.

Figure 5

Error Value Decrease in HGA-FLVQ Model Training using TGS2611 Sensor Data.
Error Value Decrease in HGA-FLVQ Model Training using TGS2611 Sensor Data.

Final confusion matrix of HGA-FLVQ model after a re-examination by ZN staining_

n = 50Predicted: NoPredicted: Yes
ZN Staining: NoTN = 22FP = 123
ZN Staining: YesFN = 1TP = 2627
2327

Confusion matrix of HGA-FLVQ model using ZN staining method_

n = 50Predicted: NoPredicted: Yes
ZN staining: NoTN = 22FP = 426
ZN staining: YesFN = 1TP = 2324
2327

Confusion matrix of FLVQ method using ZN staining as Gold standard_

n = 50Predicted : NoPredicted: Yes
ZN Staining: NoTN=25FP=126
ZN Staining: YesFN=7TP=1724
3218

Results of weight calculation and revision of LVQ training_

TGS813 SensorTGS822 SensorTGS2611 Sensor
1st Iteration
The weight of the negative class−0.0516730250.26946884−0.003179715
The weight of the positive class−0.0020364260.19852240.21423542
2nd Iteration
The weight of the negative class−0.03568080.28372976−3.8830974E-4
The weight of the positive class0.0282048790.141914680.16531087
3rd Iteration
The weight of the negative class−0.00299529780.32134010.00271485
The weight of the positive class0.0521594060.103858080.13945574
4th Iteration
The weight of the negative class0.037166130.371457960.0097912615
The weight of the positive class0.0626250060.0887058750.1361857
5th Iteration
The weight of the negative class0.075021960.4075750.017326174
The weight of the positive class0.065375990.0808758960.12186478
6th Iteration
The weight of the negative class0.098766940.426628170.02240251
The weight of the positive class0.065904890.076040130.1046309
7th Iteration
The weight of the negative class0.116281240.440898120.026141549
The weight of the positive class0.067806710.0745782550.09289357
8th Iteration
The weight of the negative class0.127866910.449393270.02856244
The weight of the positive class0.069538170.073655090.08497784
9th Iteration
The weight of the negative class0.134858430.453960660.029982805
The weight of the positive class0.070665740.072687190.08011716
10th Iteration
The weight of the negative class0.138285590.45647010.030701837
The weight of the positive class0.071503410.0725426150.07794089

Performance rates of HGA-FLVQ model_

Performance rateFormulaResult
Accuracy(TP+TN)/n(23+22)/50 × 100% = 90.00%
Error rate(FP+FN)/n(4+1)/50 × 100% = 10.00%
Sensitivity (true positive rate)TP/ZN Staining Yes23/24 × 100% = 95.83%
False positive rateFP/ZN Staining No4/26 × 100% = 15.38%
Specificity (true negative rate)TN/ZN Staining No22/26 × 100% = 84.62%
PrecisionTP/Predictive Yes23/27 × 100% = 85.19%
PrevalenceTP/n23/50 ×100% = 46.00%

Confusion matrix of HGA-FLVQ model using ZN staining re-examination_

n = 4Re-Examination ZN Staining: NoRe-Examination ZN Staining: Yes
ZN Staining: NoTN = 1FP = 34
ZN Staining: YesFN = 0TP = 00
13

Results of cluster center revisions of FLVQ training_

TGS813 Sensor data
IterationFuzziness parameterLearning rateCluster-CenterError
11.1005900.0010750.0014010.0731050.0725740.004639
21.1011800.0013090.0011600.0794810.0684030.000058
TGS822 Sensor data
11.1005900.0011130.0013460.1608990.1424460.004211
21.1011800.0013610.0010120.2181370.1037900.004771
31.1017700.0015160.0009350.2363980.1017490.000338
41.1023600.0017310.0008690.2465780.1061900.000123
51.1029500.0019820.0008170.2572520.1101360.000129
61.1035400.0022660.0007760.2683490.1135760.000135
71.1041300.0025580.0007470.2788540.1163670.000118
81.1047200.0028290.0007260.2877880.1184780.000084
TGS2611 Sensor data
11.1005900.0035750.0007050.0407320.0292540.001988
21.1011800.0021750.0007880.0745890.0160310.001321
31.1017700.0029930.0007150.0929690.0172380.000339
41.1023600.0035880.0006880.1015910.0184710.000076

Final confusion matrix of LVQ method after a re-examination by ZN staining_

n = 50Predicted : NoPredicted: Yes
ZN Staining: NoTN=22FP=426
ZN Staining: YesFN=3TP=2124
2525

Final results of HGA-FLVQ model performance_

Performance ratesFormulationPerformance of HGA-FLVQ modelPerformance of LVQ methodPerformance of FLVQ method
Accuracy(TP+TN)/n(26+22)/50 ×100% = 96.00%(21+25)/50 ×100% = 92.00%(17+25)/50 ×100% = 84.00%
Error rate(FP+FN)/n(1+1)/50 ×100% = 4.00%(1+3)/50 ×100% = 8.00%(1+7)/40 ×100% = 16.00%
Sensitivity (true positive rate)TP/(ZN Staining Yes)26/27 ×100% = 96.30%21/24 ×100% = 87.50%17/24 ×100% = 70.83%
False positive rateFP/(ZN Staining No)1/23 ×100% =4.35%1/26 ×100% = 3.85%1/26 ×100% = 3.85%
Specificity (true negative rate)TN/(ZN Staining No)22/23 ×100% = 95.65%25/26 ×100% = 96.15%25/26 ×100% = 96.15%
PrecisionTP/Predictive Yes26/27 ×100% = 96.30%21/22 ×100% = 95.45%17/18 ×100% = 94.44%
PrevalenceTP/n26/50 ×100% = 52.00%21/50 ×100% = 42.00%17/50 ×100% = 34.00%

Results of HGA-FLVQ model training_

TGS813 Sensor data
IterationFuzziness parameterLearning rateCluster centerError
11.1005900.0009870.0014000.1084940.0243540.0014483775
21.1011800.0015410.0009240.1407090.0334040.00111976
31.1017700.0020890.0007980.1636120.0392105.5822276E-4
41.1023600.0025080.0007500.1775640.0424872.0541892E-4
51.1029500.0028080.0007270.1861390.0444367.73241E-5
TGS822 Sensor data
11.1005900.0011440.0011690.0937180.2129320.004191581
21.1011800.0010080.0013550.0974080.2280772.4299692E-4
31.1017700.0009190.0015620.1027770.2387111.41901E-4
41.1023600.0008570.0017820.1070800.2488231.207616E-4
51.1029500.0008070.0020420.1109490.2597041.3338469E-4
61.1035400.0007690.0023320.1142580.2707861.3375138E-4
71.1041300.0007420.0026200.1168870.2809681.105932E-4
81.1047200.0007230.0028870.1188870.2896247.890986E-5
TGS2611 Sensor data
11.1005900.0006440.0059060.0315700.0293120.0014235964
21.1011800.0019160.0008570.0555870.0207146.50747E-4
31.1017700.0023330.0007670.0813130.0155526.8849424E-4
41.1023600.0032030.0007040.0962250.0176932.2693272E-4
51.1029500.0037250.0006830.1033210.0187305.1426956E-5

Confusion matrix of LVQ method using ZN staining as Gold standard_

n = 50Predicted : NoPredicted: Yes
ZN Staining: NoTN=25FP=126
ZN Staining: YesFN=3TP=2124
2822

Testing result of a positive ZN staining patient using HGA-FLVQ model_

Amplitude orderTarget classClass distance 1Class distance 2Prediction class
120.3690.4241
220.3570.3921
320.2850.2382
420.2620.1772
520.3370.3182
620.3170.1502
720.3210.0762
820.3100.0872
920.3070.0902
1020.2900.1072
1120.2860.1112
1220.3050.0922
1320.2860.1112
1420.2840.1132
1520.28800.1092
1620.2920.1052
1720.2800.1172
1820.2880.1112
1920.2890.1122
2020.2800.1172

Final confusion matrix of FLVQ method after a re-examination by ZN staining_

n = 50Predicted: NoPredicted: Yes
ZN Staining: NoTN=22FP=426
ZN Staining: YesFN=7TP=1724
2921

Previous researches_

ReferenceSample typeClassification methodsResults
Fend et al. (2006) SputumBack propagation artificial neural networkSensitivity 89.09% Specificity 91.14%
Gibson et al. (2009) SputumLinear discriminant analysisAverage Sensitivity 80% Average Specificity 75%
Kolk et al. (2010) SputumRob electronic-nose: Linear Discriminant Analysis Partial least square discriminant analysisSensitivity 57-64% Specificity 61–70% Sensitivity 42–50% Specificity 73–77%
Walter electronic-nose: Linear discriminant analysis Partial least square discriminant analysisSensitivity 56-66% Specificity 65–68% Sensitivity 37–61% Specificity 56–67%
Language: English
Page range: 1 - 13
Published on: Apr 30, 2018
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2018 N. Charibaldi, A. Harjoko, Azhari,, B. Hisyam, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.