Have a personal or library account? Click to login
Hydrogen Gas Sensing Performance Of Pt/Sno2 Nanowires/Sic Mos Devices Cover

Hydrogen Gas Sensing Performance Of Pt/Sno2 Nanowires/Sic Mos Devices

Open Access
|Dec 2017

References

  1. 1N. Yamazoe, “New approaches for improving semiconductors gas sensors “ in Proc. 3rd International Meeting on Chemical Sensors, Cleveland, OH, U.S.A., 1990, pp. 3-8.
  2. 2N. Yamazoe, “New approaches for improving semiconductor gas sensors,” Sensors and Actuators B: Chemical, vol. 5, pp. 7-19, 1991.10.1016/0925-4005(91)80213-4
  3. 3N. Barsan, M. Schweizer-Berberich, and W. Gopel, Fresenius Journal of Analytical Chemistry, vol. 365, pp. 287-304, 1999.10.1007/s002160051490
  4. 4E. Comini, “Metal oxide nano-crystals for gas sensing,” Analytica Chimica Acta, vol. 568, pp. 28-40, 2006.10.1016/j.aca.2005.10.069
  5. 5K. Kalantar-zadeh and F. Benjamin, Nanotechnology-Enabled Sensors. Springer, 2008.10.1007/978-0-387-68023-1
  6. 6A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito, and K. Kalantar-zadeh, “Characterization of ZnO nanobelt-based gas sensor for H2, NO2, and hydrocarbon sensing,” IEEE Sensors Journal, vol. 7, pp. 919-924, 2007.10.1109/JSEN.2007.895963
  7. 7E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, and Z. L. Wang, “Stable and highly sensitive gas sensors based on semiconductiong oxide nanobelts,” Appl. Phys. Lett, vol. 81, pp. 18691871, 2002.
  8. 8D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, and C. Zhou, “Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices,” NanoLetters, vol. 4, no. 10, pp. 1919-1924, 2004.
  9. 9K. M. Sawicka, A. K. Prasad, and P. I. Gouma, “Metal oxide nanowires for use in chemical sensing applications,” Sensor Letter, vol. 3, no. 1, pp. 1-5, 2005.10.1166/sl.2005.010
  10. 10H. Y. Dang, J. Wang, and S. S. Fan, “The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres,” Nanotechnology, vol. 14, pp. 738741, 2003.
  11. 11A. L. Spetz, P. Tobias, A. Baranzahi, P. Martensson, and I. Lundstrom, “Current status of silicon carbide based high-temperature gas sensors,” IEEE T Electron Dev, vol. 46, pp. 561-566, 1999.10.1109/16.748877
  12. 12A. Arbab, A. Spetz, and I. Lundstrom, “Evaluation of Gas Mixtures with High-Temperature Gas Sensors Based on Silicon Carbide,” Sensors and Actuators B, vol. 18-19, pp. 562-565, 1994.10.1016/0925-4005(93)01085-I
  13. 13S. Kandasamy, A. Trinchi, W. Wlodarski, E. Comini, and G. Sberveglieri, “Study of Pt/TiO2/SiC schottky diode based gas sensor,” in Proc. IEEE Sensors Conf. 2004; vol. 2, pp. T2P-P.18, 2004.
  14. 14S. Kandasamy, W. wlodarski, A. Holland, S. Nakagomi, and Y. Kokubun, “Electrical characterization and hydrogen gas sensing properties of a n-ZnO/p-SiC Pt-gate metal semiconductor field effect transistor,” Applied Physics Letters, vol. 90, p. 064103, 2007.
  15. 15A. Trinchi, W. Wlodarski, and Y. X. Li, “Hydrogen sensitive Ga2O3 Schottky diode sensor based on SiC,” Sensors and Actuators B, vol. 100, pp. 94-98, 2004.10.1016/j.snb.2003.12.028
  16. 16S. Nakagomi, K. Okuda, and Y. Kokubun, “Electrical properties dependent on H2 gas for new structure diode of Pt-thin WO3-SiC,” Sensors and Actuators B: Chemical, vol. 96, pp. 364371, 2003.
  17. 17G. W. Hunter, P.G. Neudeck, M. Gray, D. Androjna, L-Y. Chen, R. W. Hoffman, C.C. Liu, and Q. H. Wu, “SiC-based gas sensor development,” Mater. Sci. Forum 338-342 (part 2), pp. 1439-1442, 2000.
  18. 18V. Demarne and R. Sanjine, “Thin film semiconducting metal oxide gas sensors,” Gas Sensors, edited by G. Sberveglieri (Kluwer Academic Publishers, Netherlans, 1992), pp. 89-116, Ch. 3.10.1007/978-94-011-2737-0_3
  19. 19U. Hoefer, J. Frank, and M. Fleischer, “High temperature Ga2O3-gas sensors and SnO2-gas sensors: a comparison,” Sensors and Actuators B: Chemical, vol. 78, pp. 6-11, 2001.10.1016/S0925-4005(01)00784-5
  20. 20M. Law, H. Kind, B. Messer, F. Kim, and P. Yang, “Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature,” Angew. Chem. Int. Ed, vol. 41, pp. 24052408, 2002.
  21. 21A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensors,” Advanced Materials, vol. 15, pp. 997-1000, 2003.10.1002/adma.200304889
  22. 22F. Li, J. Xu, X. Yu, L. Chen, J. Zhu, Z. Yang, and X. Xin, “One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles,” Sensors and Actuators B: Chemical, vol. 81, pp. 165-169, 2002.10.1016/S0925-4005(01)00947-9
  23. 23G. Sberveglieri, C. Baratto, E. Comini, G. Faglia, M. Ferroni, A. Ponzoni, and A. Vomiero, “Synthesis and characterization of semiconducting nanowires for gas sensing,” Sensors and Actuators B: Ch.emical, vol. 121, pp. 208-213, 2007.10.1016/j.snb.2006.09.049
  24. 24S. Bianchi, E. Comini, M. Ferroni, G. Sberveglieri, L. Pandolfi, S. Kaciulis, W. Wlodarski, M. Shafiei, and S. Kandasamy, “Preparation and characterization of tin oxide nano;wires on SiC,” presented at the 14th Int. Conf. on Solid-State, Actuators and Microsystems, Lyon, France, June 2007.10.1109/SENSOR.2007.4300101
  25. 25V.M. Jiménez, J.A. Meíjas, J.P. Espinós, A.R. González-Elipe, “Interface effects for metal oxide films deposited on another metal oxide”, Surface Science, vol. 366, pp. 545-555, 1996.10.1016/0039-6028(96)00831-X
  26. 26V.M. Jiménez, J.P. Espinós, A.R. González-Elipe, “Interface effects for metal oxide films deposited on another metal oxide”, Surface Science, vol. 366, pp. 556-563, 1996.10.1016/0039-6028(96)00832-1
  27. 27S. Kaciulis, L. Pandolfi, S. Bianchi, E. Comini, G. Faglia, M. Ferroni, G. Sberveglieri, M. Shafiei, S. Kandasamy, and W. Wlodarski, “Nanowires of metal oxides for gas sensing applications,” Surf. Interface Anal., vol. 39, 2008, in press.10.1002/sia.2736
  28. 28I. Lundstrom, M. S. Shivaraman, and C. M. Svensson, “A hydrogen-sensitive Pd-gate MOS transistor,” J. Appl. Phys., vol. 46 (9), pp. 3876-3881, 1975.
  29. 29I. Lundstrom, M. Armgarth, and L. G. Petersson, “Physics with catalytic metal gate chemical sensors,” Crc Critical Reviews in Solid State and Materials Sciences, vol. 15, pp. 201-278, 1989.10.1080/10408438908243446
  30. 30S. Kandasamy, A. Trinchi, W. Wlodarski, E. Comini, and G. Sberveglieri, “Hydrogen and hydrocarbon gas sensing performance of Pt/WO3/SiC MROSiC devices,” Sensors and Actuators B: Chemical, vol. 111-112, pp. 111-116, 2005.10.1016/j.snb.2005.06.066
  31. 31S. M. Sze, Physics of Semiconductor Devices. 2nd ed, Wiley, New York, 1981.
  32. 32A. Trinchi, W. Wlodarski, Y. X. Li, G. Faglia, and G. Sberveglieri, “Pt/Ga2O3/SiC MRISiC devices: a study of the hydrogen response,” J. phys. D: Appl. Phys, vol. 38, pp. 754-763, 20010.1088/0022-3727/38/5/014
Language: English
Page range: 771 - 783
Published on: Dec 13, 2017
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 M. Shafiei, K. Kalantar-zadeh, W. Wlodarski, E. Comini, M. Ferroni, G. Sberveglieri, S. Kaciulis, L. Pandolfi, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.