References
- Neven D, Brabandere B D, Georgoulis S, et al. Towards End-to-End Lane Detection: an Instance Segmentation Approach [J]. IEEE, 2018.
- Pan X, Shi J, Luo P, et al. Spatial As Deep: Spatial CNN for Traffic Scene Understanding. 2017.
- Hou Y, Ma Z, Liu C, et al. Learning Lightweight Lane Detection CNNs by Self Attention Distillation [J]. 2019
- An improved YOLOv3 model based on skipping connections and spatial pyramid pooling [J]. Systems Science & Control Engineering, 2021, 9(S1).
- Chun-yang CHENG, Min LI, Xue-wu ZHANG, Yu-bo XIE, Yan XIANG, Jin-bao SHENG. A Lane Detection Algorithm under Complex Scenes [A]. Advanced Science and Industry Research Center. Proceedings of 2017 2nd International Conference on Computer, Mechatronics and Electronic Engineering(CMEE 2017)[C]. Advanced Science and Industry Research Center: Science and Engineering Research Center, 2017:5.
- Xu H, Wang S, Cai X, et al. CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending [J]. 2020.
- Q. Zou, H. Jiang, Q. Dai, et al. Robust Lane Detection From Continuous Driving Scenes Using Deep Neural Networks [J]. 2019.
- Zhihuan Wu, Yongming Gao, Lei Li, Junshi Xue, Yuntao Li. Semantic segmentation of high-resolution remote sensing images using fully convolutional network with adaptive threshold [J]. Connection Science, 2019, 31(2).
- Vadim Romanuke. A Prototype Model for Semantic Segmentation of Curvilinear Meandering Regions by Deconvolutional Neural Networks [J]. Applied Computer Systems, 2020, 25(1).
- Chu He, Shenglin Li, Dehui Xiong, Peizhang Fang, Mingsheng Liao. Remote Sensing Image Semantic Segmentation Based on Edge Information Guidance [J]. Remote Sensing, 2020, 12(9).
- Lin T Y, Dollar P, Girshick R, et al. Feature Pyramid Networks for Object Detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, 2017.
- Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[C]//CVPR. IEEE, 2014.
- He K, Gkioxari G, P Dollár, et al. Mask R-CNN [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017.
- Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015.
- Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017:1-1.
- Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer International Publishing, 2015.
- Paszke A, Chaurasia A, Kim S, et al. ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation [J]. 2016.
- ZHAO H S, SHI J P, (}I X J, et al. Pyramid network[C]//Proceedings of the 2017 1EEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017:2881-2890. DOI: 10.1109/CVPR.2017.660.
- Romera E, Alvarez J M, Bergasa L M, et al. ERFNet: Efficient Residual Factorized ConvNet for Real-Time Semantic Segmentation [J]. IEEE Transactions on Intelligent Transportation Systems, 2017, PP(1):1-10.
- CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [EB/OL]. [2018-08-09]. https://arxiv.org/pef/1802.0261v1.pdf.20.FPN
- Lin T Y, Dollar P, Girshick R, et al. Feature Pyramid Networks for Object Detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, 2017.