Have a personal or library account? Click to login
PREDICTIVE MICROBIOLOGY OF FOOD Cover

References

  1. Akmel D.C., Tapé T. i wsp.: Quantitative assessment of the microbiological risk associated with the consumption of attieke in Côte d’Ivoire. Food Control, 81, 65–73 (2017)10.1016/j.foodcont.2017.05.035
  2. Alber S.A., Schaffner D.W.: Evaluation of data transformations used with squere root and Schoolfield models for predicting bacterial growth rate. App. Environ. Microbiol. 58, 3337–3342 (1992)
  3. Alber S.A., Schaffner D.W.: New modified squere root and Schoolfield models for predicting bacterial growth rate as a function of temperature. J. Ind. Microbiol. 12, 206–210 (1993)
  4. Amina M., Panagou E.Z., Kodogiannis V.S., Nychas G-J.E.; Wavelet neural networks for modeling high pressure inactivation kinetics of Listeria monocytogenes in UHT whole milk. Chemom. Intell. Lab. Syst. Discipline. 103, 170–183 (2010)
  5. Aspridou Z., Koutsoumanis K.P.: Individual cell heterogeneity as variability source in population dynamics of microbial inactivation, Food Microbiol. 45, 216–221 (2015)
  6. Atsamnia D., Hamadache M., Hanini S., Benkortbi O., Oukrif D.: Prediction of the antibacterial activity of garlic extract on E. coli, S. aureus and B. subtilis by determining the diameter of the inhibition zones using artificial neural networks. LWT – Food Science and Technology, 82, 287–295 (2017)10.1016/j.lwt.2017.04.053
  7. Augustin J-Ch., Carlier V.: Modelling the growth rate of Listeria monocytogenes with a multiplicative type model including interactions between environmental factors. Int. J. Food Microbiol. 56, 53–70 (2000)10.1016/S0168-1605(00)00224-5
  8. Baranyi J., da Silva N.S.: The use of predictive models to optimize risk of decisions. Int. J. Food Microbiol. 240, 19–23 (2017)10.1016/j.ijfoodmicro.2016.10.016
  9. Baranyi J., Pin C.: Estimating bacterial growth parameters by means of detection times. Appl. Environ. Microbiol. 65, 732–736 (1999)
  10. Baranyi J., Roberts T.A., McClure P.: A non-autonomous differential equation to model bacterial growth. Food Microbiol. 10, 43–59 (1993)10.1006/fmic.1993.1005
  11. Barker-Reid F., Harper G.A., Hamilton A.J.: Affluent effluent: growing vegetables with wastewater in Melbourne, Australia – a wealthy but bone-dry city. Irrigat. Drain Syst. 24, 79–94 (2010)10.1007/s10795-009-9082-x
  12. Basheer I.A., Hajmeer M.: Artificial neural networks: fundamentals, computing, design, and application. J. Microbiological Methods, Neural Computting in Micrbiology, 43, 3–31 (2000)10.1016/S0167-7012(00)00201-3
  13. Bowman J., McMeekin T., McQuestion O., Mellefont L., Ross T., Tamplin M.: The future of predictive microbiology: strategic research, innovative applications and great expectations. Int. J. Food Microbiol. 128, 2–9 (2008)10.1016/j.ijfoodmicro.2008.06.02618703250
  14. Brucker S., Albrecht A., Petersen B., Kreyenschmidt J.: A predictive shelf life model as a tool for the improvement of quality management in pork and poultry chains. Food Control, 29, 451–460 (2013)10.1016/j.foodcont.2012.05.048
  15. Brul S., Mensonides F.I.C., Hellingwerf K.J., Teixeira de Mattos J.M.: Microbial systems biology: New frontiers open to predictive microbiology. Int. J. Food Microbiol. 5th International Conference on Predictive Modelling in Foods, 128, 16–21 (2008)
  16. Buchanan R.L.: Predictive food microbiology. Trends Food Sci. Technol. 4, 6–11 (1993)
  17. Buchanan R.L., Damert W.G., Whiting R.C., Van Schothorst M.: An approach for using epidemiologic and microbial food survey data to develop a ‘purposefully conservative’ estimate of the dose-response relationship between Listeria monocytogeneslevels and the incidence of foodborne listeriosis. J. Food Prot. 60, 918–922 (1997)10.4315/0362-028X-60.8.91831207816
  18. Buchanan R.L., Havelaar A.H., Smith M.A., Whiting R.C., Julien E.: The key events dose-response framework: its potential for application to foodborne pathogenic microorganisms. Crit. Rev. Food Sci. Nutr. 49, 718–728 (2009)
  19. Buchanan R.L., Smith J.L., Long W.: Microbial risk assessment: Dose-response relations and risk characterization. Int. J. Food Microbiol. 58, 159–172 (2000)10.1016/S0168-1605(00)00270-1
  20. Butler F., Xu Y.: Prediction of Staphylococcus aureus growth in ham during chilling using Pathogen Modeling Program. Biosystem Engineering, 16, 20–23 (2011)
  21. Carrasco E., Perez-Rodriguez F., Valero A., Garcia-Gimeno R.M., Zurera G.: Risk assessment and management of Listeria monocytogenes in ready-to-eat lettuce salads. Compr. Rev. Food Sci. F. 9, 498–512 (2010)
  22. Codex Alimentarius Commission. Report of the Thirtieth Session of the Codex Committee on Food Hygiene (CCFH). Alinorm 99/13 Appendix IV: s. 58–64 1999. http://www.codexali-mentarius.net/download/report/112/Al99_13e.pdf (18.09.2017)
  23. Coleman M.E., Marks H.M.: Qualitative and quantitative risk assessment, Food Control,10, 289–297(1999).
  24. Couvert O., Augustin J-Ch. i wsp. Validation of a stochastic modelling approach for Listeria monocytogenes growth in refrigerated foods. Int. J. Food Microbiol. 144, 236–242 (2010)
  25. Daughtry B.J., Davey K.R., King K.D.: Temperature dependence of growth kinetics of food bacteria. Food Microbiol. 14,21–30 (1997)10.1006/fmic.1996.0064
  26. Davey K.R.: Applicability of the Davey (linear Arrhenius) predictive model to the lag phase of microbial growth. J. App. Bacteriol., 70,253–257 (1991)
  27. Davey K.R.: Linear-Arrhenius models for bacterial growth and depth and vitamin denaturations. J. In. Microbiol. 12, 172–179 (1993)
  28. Davey K.R.: Modeling the combined effect of temperature and pH on the rate coefficient for bacterial growth. Int. J. Food Microbiol. 23, 295–303 (1994)10.1016/0168-1605(94)90158-9
  29. De Keuckelaere A., Jacxsens L., Amoah P., Medema G., McClure P., Jaykus L.-A., Uyttendaele M.: Zero risk does not exist: lessons learned from microbial risk assessment related to use of water and safety of fresh produce. Compr. Rev. Food Sci. F. 14, 387–410 (2015)
  30. Dermesonluoglu E., Fileri K., Orfanoudaki A., Tsevdou M., Modeling the microbial spoilage and quality decay of pre-packed dandelion leaves as function of temperature. J. Food Eng. 184, 21–30 (2016)
  31. 31.Devlieghere F., Francois K., Vermeulen A., Debevere J.: Predictive microbiology (w) Predictive modeling and risk assessment. Integrating safety and environmental knowledge into food studies towards European sustainable development, red. R. Costa, K. Kristbergsson, Springer, Boston, 2009, s. 29–5310.1007/978-0-387-68776-6_3
  32. Dominguez S., Schaffner D.W.: Microbiological quantitative risk assessment (w) Safety of meat and processed meat, red. F. Toldrá, Springer, New York, 2009, s. 591–61410.1007/978-0-387-89026-5_23
  33. FAO/WHO. Microbiological Risk Assessment Series 2: Risk Assessments of Salmonella in Eggs and Broiler Chickens. World Health Organization, Food and Agricultural Organization of the United Nations, Geneva, Rome, 2002, www.fao.org/3/a-y4392e. pdf (11.09.2017)
  34. FAO/WHO. Microbiological risk assessment series 3: Hazard characterization for pathogens in food and water. World Health Organization, Food and Agricultural Organization of the United Nations, Geneva, Roma, 2003, whqlibdoc.who.int/publications/2003/9241562374.pdf (11.09.2017)
  35. Fernández J.C., Hervás C., Martínez-Estudillo F.J., Gutiérrez P.A.: Memetic Pareto Evolutionary Artificial Neural Networks to determine growth/no-growth in predictive microbiology. Appl. Soft Comput. 11, 534–550 (2011)10.1016/j.asoc.2009.12.013
  36. Fernández-Navarro F., Hervás-Martínez C., Cruz-Ramírez M., Gutiérrez P.A., Valero A.: Evolutionary q-Gaussian Radial Basis Function Neural Network to determine the microbial growth/ no growth interface of Staphylococcus aureus. Appl. Soft Comput. 11, 3012–3020 (2011)10.1016/j.asoc.2010.11.027
  37. Ferrari A., Lombardi S., Signoroni A.: Bacterial colony counting with convolutional Neural Networks in Digital Microbiology Imaging. Patter Recognit. 61, 629–640 (2017)10.1016/j.patcog.2016.07.016
  38. Giaccone V., Ferri, M..: Microbiological quantitative risk assessment and food safety: an update. Vet. Res. Commun. 29, 101– 106 (2005)10.1007/s11259-005-0020-616244933
  39. Guiller L.: Predictive microbiology models and operational readiness. Procedia Food Sci. 7, 133–136 (2016)10.1016/j.profoo.2016.05.003
  40. Gunvig A., Hansen F., Borggaard C.: A mathematical modeling for predicting growth/no-growth of psychrotrophic C. botulinum in meat products with five variables. Food Control, 29, 309–317 (2013)10.1016/j.foodcont.2012.06.046
  41. Hamilton A.J., Stagnitti F., Premier R., Boland A.M., Hale G.: Quantitative microbial risk assessment models for consumption of raw vegetables irrigated with reclaimed water. Appl Environ Mikrob. 72, 3284–3290 (2006)10.1128/AEM.72.5.3284-3290.2006
  42. Heinemann, M., Sauer U.: Systems biology of microbial metabolism. Curr. Opin. Microbiol. 13, 337–43 (2010)
  43. Huang L.: IPMP 2013 – A comprehensive data analysis tool for predictive microbiology. Int. J. Food Microbiol. 171, 100–107 (2014).10.1016/j.ijfoodmicro.2013.11.019
  44. Huang L., Juneja V. K., Yan X.: Thermal inactivation of food-borne pathogens in the USA pathogen modeling program. J. Therm. Anals. and Colorim. 106, 191–198 (2011)
  45. Ilnicka-Olejniczak O., Hornecka D.: Prognozowanie w mikro-biologii żywności (w) Food Product Development. Opracowanie nowych produktów żywnościowych. Wydawnictwo AR, Poznań, 1995, s. 149–168
  46. Julien E., Boobis A.R., Olin S.S.: The key events dose-response framework: a cross disciplinary mode-of-action based approach to examining dose-response and thresholds. Crit Rev. Food Sci. Nutr. 49, 682–689 (2009)10.1080/10408390903110692
  47. Keeratipibul S., Phewpan A., Lursinsap Ch.: Prediction of coli-forms and Escherichia coli on tomato fruits and lettuce leaves after sanitizing by using Artificial Neural Networks. LWT-Food Sci. Technol. 44,130–138 (2011)
  48. Kilcast D., Subramanian P.: The stability and shelf-life of food. Woodhead Publishing, Cambridge, 200010.1201/9781439822869
  49. Kim H.W., Lee K., Kim S. H., Rhee M.S.: Predictive modeling of bacterial growth in ready-to-use salted napa cabbage (Brassica pekinensis) at different storage temperatures. Food Microbiol. 70, 129–136 (2018)10.1016/j.fm.2017.09.017
  50. Klapwijk P.M., Jouve J.-L., Stringer M.F.: Microbiological risk assessment in Europe: the next decade. Int. J. Food Microbiol. 58, 223–230 (2000)10.1016/S0168-1605(00)00276-2
  51. Koseki S.: Microbial responses viewer (MRV): A new ComBase-derived database of microbial responses to food environments. Int. J. Food Microbiol. 134, 75–82 (2009)10.1016/j.ijfoodmicro.2008.12.01919181410
  52. Koseki S.: Risk assessment of microbial and chemical contamination in fresh produce (w) Global Safety of Fresh Produce red. J. Hoorfan, Woodhead Publishing Limited, Cambridge, 2014, s. 153–17110.1533/9781782420279.2.153
  53. Koutsoumanis, K.: A study on the variability in the growth limits of individual cells and its effect on the behavior of microbial populations. Int. J. Food Microbiol. 5th International Conference on Predictive Modelling in Foods, 128, 116–121 (2008)
  54. Koutsoumanis K. P., Lianou A.: Stochasticity in Colonial Growth Dynamics of Individual Bacterial Cells. Appl. Environ. Microbiol. 79, 2294–2301 (2013)
  55. Koutsoumanis K. P., Lianou A., Gougoul M.: Latest developments of foodborne pathogens modeling. Curr. Opin. Food Sci. 8, 89–98 (2016)
  56. Krishnan K. R., Babuskin S., Babu P. A. S., Sivarajan M., Sukumar M.: Evaluation and predictive modeling the effect of spice extracts an raw chicken meat stored at different temperatures. J. Food Eng. 166, 29–37 (2015)10.1016/j.jfoodeng.2015.05.021
  57. Lammerding, A.M., Fazil, A.: Hazard identification and exposure assessment for microbial food safety risk assessment. Int. J. Food Microbiol. 58, 147–157 (2000)10.1016/S0168-1605(00)00269-5
  58. Larsen P., Yuki H., Gilbert J.: Modeling microbial communities: Current, developing, and future technologies for predicting microbial community interaction. J. Biotechnol. 160, 17–24 (2012)10.1016/j.jbiotec.2012.03.009
  59. Lim K.Y., Jiang S.C.: Reevaluation of health risk benchmark for sustainable water practice through risk analysis of rooftop-harvested rainwater. Water Res. 47, 7273–7286 (2013)10.1016/j.watres.2013.09.059
  60. Mafart P.: Food engineering and predictive microbiology: on the necessity to combine biological and physical kinetics. Int. J. Food Microbiol. 100, 239–251 (2005)10.1016/j.ijfoodmicro.2004.10.023
  61. Magnússon S.H., Verhagen H.: State of the art in benefit – risk analysis: Food microbiology. Food Chem. Toxicol. 50, 33–39 (2012)
  62. McKellar C., Xuewen L.: Modeling microbial responses in food. CRC Press, USA, 200410.1201/9780203503942
  63. McKellar, R. C., Knight K.: A combined discrete-continuous model describing the lag phase of Listeria monocytogenes. Int. J. Food Microbiol. 54 (3), 171–80 (2000)10.1016/S0168-1605(99)00204-4
  64. McMeekin T.A.: Predictive microbiology: quantitative science delivering quantifiable benefits to the meat industry and other food industries. Meat Science, 77, 17–27 (2007)10.1016/j.meatsci.2007.04.005
  65. McMeekin T. A., Bowman J., McQuestin O., Mellefont L., Ross T., Tamplin M.: The future of predictive microbiology: Strategic research, innovative applications and great expectations. Int. J. Food Microbiol. 128, 2–9 (2008)10.1016/j.ijfoodmicro.2008.06.026
  66. McMeekin T.A., Olley J., Ratkowsky D.A., Ross T.: Predictive microbiology: towards the interface and beyond. Int. J. Food Mocrobiol. 73, 395–407 (2002)10.1016/S0168-1605(01)00663-8
  67. McMeekin T.A., Olley J.N., Ross T., Ratkowsky D.A.: Predictive microbiology, theory and application, RST LTD, England, 1993
  68. McMeekin T. A., Ross T.: Predictive microbiology: providing a knowledge-based framework for change management. J. Food Microbiol. 1, 133–153 (2002)10.1016/S0168-1605(02)00231-3
  69. Moon H., Kim S., Chen J., George N., Kodell R..: Model uncertainty and model averaging in the estimation of infectious dose for microbial pathogens. Risk Anal. 33, 220–231 (2013).10.1111/j.1539-6924.2012.01853.x
  70. Mota A., Mena K.D., Soto-Beltran M., Tarwater P.M., Chaidez C.: Risk assessment of Cryptosporidium and Giardia in water irrigating fresh produce in Mexico. J. Food Protect. 72, 2184– 2188 (2009)10.4315/0362-028X-72.10.2184
  71. Najjar Y.M., Basheer I.A., Hajmeer H.N.: Computional neural networks for predictive microbiology: I. Methodology. Int. J. Food Mocrobiol. 34, 27–49 (1997)10.1016/S0168-1605(96)01168-3
  72. Nauta M.J..: Modelling bacterial growth in quantitative microbiological risk assessment: is it possible? Int. J. Food Microbiol. 73, 297–304 (2002)10.1016/S0168-1605(01)00664-X
  73. Nauta, M. van der Fels-Klerx I., Havelaar A.: A poultry-processing model for quantitative microbiological risk assessment. Risk Anal. 25, 85–98 (2005)
  74. O’Mahony C., Seman D. L.: Modeling the microbial shelf life of Foods and Beverages (w) The Stability and Shelf Life of Food, red. Persis Subramaniam, Woodhead Publishing Series in Food Science, Cambridge, 2016, s. 253–28910.1016/B978-0-08-100435-7.00009-5
  75. Pérez-Rodríguez F., Campos D., Ryser E.T., Buchholz A.L,. Posada-Izquierdo G.D., Marks B.P., Zurera G., Todd E.C.D.: A mathematical risk model for Escherichia coli O157:H7 cross contamination of lettuce during processing. Food Microbiol. 28, 694–701 (2011)
  76. Pérez-Rodríguez F., Valero A.: Application of Predictive Models in Quantitative Risk Assessment and Risk Management (w) Predictive Microbiology in Foods (red.) F. Pérez-Rodríguez, A. Valero, Springer, Berlin, 2013, s. 87–9710.1007/978-1-4614-5520-2_6
  77. Pérez-Rodríguez F., Valero A., Carrasco E., García R.M., Zurera G.: Understanding and modeling bacterial transfer to foods: a review. Trends Food Sci. Technol. 19, 131–44 (2008)
  78. Pérez-Rodríguez F., van Asselt E.D., Garcia-Gimeno R.M., Zurera G., Zwietering M.H.: Extracting additional risk managers information from a risk assessment of Listeria monocytogenes in deli meats. J. Food Prot. 70, 1137–1152 (2007)10.4315/0362-028X-70.5.1137
  79. Petterson S.R, Ashbolt N.J., Sharma A.: Microbial risks from wastewater irrigation of salad crops: a screening-level risk assessment. Water Environ. Res. 73, 667–672 (2001)
  80. Plaza-Rodríguez C., Thoens C., Falenski A., Weiser A.A., Appel B., Kaesbohrer A., Filter M.: A strategy to establish Food safety Model Repositories. Int. J. Food Microbiol. 204, 81–90 (2015)10.1016/j.ijfoodmicro.2015.03.010
  81. Pruitt K.M., Kamau D.N.: Mathematical model of bacterial growth, inhibition and depth under combined stress conditions. J. Ind. Microbiol. 12, 221–231 (1993)
  82. Pujol L., Albert I., Magras C., Johnson N., B., Membre J.-M., Probabilistic exposure assessment model to estimate aseptic-UHT product failure rate. Int. J. Food Microbiol. 192, 124–141 (2015)10.1016/j.ijfoodmicro.2014.09.023
  83. Ratkowsky D.A.: Principles of nonlinear regression modeling, J. Ind. Microbiol., 12, 195–199 (1993)
  84. Roberts T. A.: Microbial Growth and Survival: Developments in Predictive Modelling. Int. Biodeterior. Biodegr. 36, 297–309 (1995)
  85. Ross T., McMeekin T.A.: Predictive microbiology. Int. J. Food Mocrobiol. 23, 241–264 (1994)10.1016/0168-1605(94)90155-4
  86. Rozporządzenie Komisji (WE) nr 2073/2005 z dnia 15 listopada 2005 r. w sprawie kryteriów mikrobiologicznych dotyczących środków spożywczych. Dz.U. L 338 z 22.12.2005
  87. Seliwiorstow T., Uyttendaele M., De Zutter L., Nauta M.: Application of TRiMiCri for the evaluation of risk based microbiological criteria for Campylobacter on broiler meat. Microb. Risk Anal. 2–3, 78–82 (2016)10.1016/j.mran.2016.05.001
  88. Sheen S., Hwang Ch.-A.: Mathematical modeling the cross-contamination of Escherichia coli O157:H7 on the surface of ready-to-eat meat product while slicing. Food Microbiol. 27, 37–43 (2010)10.1016/j.fm.2009.07.01619913690
  89. Smith M.A., Takeuchi K., Anderson G., Ware G.O., McClure H.M., Raybourne R.B., Mytle N., Doyle M. P.: Dose response for Listeria monocytogenes induced stillbirths in nonhuman primates. Infect. Immun. 76, 726–731 (2008)
  90. Strachan N.J.C., Doyle M.P., Kasuga F., Rotariu O., Ogden I.D.: Dose response modelling of Escherichia coli O157 incorporating data from foodborne and environmental outbreaks. Int. J. Food Microbiol. 10, 35–47 (2005)10.1016/j.ijfoodmicro.2004.11.02316084264
  91. Tadeusiewicz R.: Elementarne wprowadzenie do techniki sieci neuronowych z przykładowymi programami, Akademicka Oficyna Wydawnicza PLJ, Warszawa, 1998
  92. Tadeusiewicz R.: Sieci Neuronowe, Akademicka Oficyna Wydawnicza RM, Warszawa, 1993
  93. Tenenhaus-Aziza F., Ellouze M.: Software for predictive microbiology and risk assessment: A description and comparison of tools presented at the ICPMF8 Software Fair, Food Microbiol. 45, 290–299 (2015)
  94. Teunis, P.F.M., Van der Heijden, O.G., Van der Giessen, J.W.B., Havelaar, A.H.: The dose-response relation in human volunteers for gastro-intestinal pathogens, Report number 284550002. National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands 1996, http://www.rivm. nl/en/Documents_and_publications/Scientific/Reports/1996/ april/The_dose_response_relation_in_human_volunteers_for_ gastro_intestinal_pathogens (4.09.2017)
  95. van Gerwen S., Zwietering M.H.: Growth and inactivation models to be used in quantitative risk assessments. J. Food Prot. 61, 1541–1549 (1998)10.4315/0362-028X-61.11.15419829202
  96. van Ginneken M., Oron G.: Risk assessment of consuming agricultural products irrigated with reclaimed wastewater: an exposure model. Water Resour. Res. 36, 2691–2699 (2000)10.1029/2000WR900106
  97. Whiting R.C.: Microbial modeling in food. Critical Reviews in Food Scie. and Nutrit. 35, 467–494 (1995)
  98. Whiting, R. C., Buchanan R. L.: A classification of models for predictive microbiology. Food Microbiology,10, 175–177 (1993)10.1006/fmic.1993.1017
  99. Williams D., Irvin E.A., Chmielewski R.A., Frank J.F., Smith M.A.: Dose response of Listeria monocytogenes after oral exposure in pregnant guinea pigs. J. Food Prot. 70, 1122–1128 (2007)10.4315/0362-028X-70.5.1122
  100. Zwietring M.H., Jongenburger I., Rombouts F.M., Van’t Rient K.: Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56, 1875–1881 (1990)
DOI: https://doi.org/10.21307/PM-2018.57.3.229 | Journal eISSN: 2545-3149 | Journal ISSN: 0079-4252
Language: English, Polish
Page range: 229 - 243
Submitted on: Nov 1, 2017
Accepted on: Feb 1, 2018
Published on: Feb 26, 2022
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Elżbieta Rosiak, Katarzyna Kajak-Siemaszko, Monika Trząskowska, Danuta Kołożyn-Krajewska, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.