References
- Mayil M, Keser G, Demir A, Pekiner FN: Assessment of masseter muscle appearance and thickness in edentulous and dentate patients by ultrasonography. Open Dent J 2018; 12: 723–734.
- Schellhas KP: MR imaging of muscles of mastication. AJR Am J Roentgenol 1989; 153: 847–855.
- Norton NS, Netter FH: Netter’s head and neck anatomy for dentistry. 2nd ed. WB Saunders, Philadelphia 2012: 223–225.
- Weijs WA, Hillen B: Correlations between the cross-sectional area of the jaw muscles and craniofacial size and shape. Am J Phys Anthropol 1986; 70: 423–431.
- Reis Durão AP, Morosolli A, Brown J, Jacobs R: Masseter muscle measurement performed by ultrasound: a systematic review. Dentomaxillofac Radiol 2017; 46: 20170052.
- Weijs WA, Hillen B: Correlations between the cross-sectional area of the jaw muscles and craniofacial size and shape. Am J Phys Anthropol 1986; 70: 423–431.
- Uchida Y, Motoyoshi M, Shigeeda T, Shinohara A, Igarashi Y, Sakaguchi M et al.: Relationship between masseter muscle size and maxillary morphology. Eur J Orthod 2011; 33: 654–659.
- Kiliaridis S, Kalebo P: Masseter muscle thickness measured by ultrasonography and its relation to facial morphology. J Dent Res 1991; 70: 1262–1265.
- Close PJ, Stokes MJ, L’Estrange PR, Rowell J: Ultrasonography of masseter muscle size in normal young adults. J Oral Rehabil 1995; 22: 129–134.
- Raadsheer MC, Van Eijden TM, Van Ginkel FC, Prahl-Andersen B: Human jaw muscle strength and size in relation to limb muscle nstrength and size. Eur J Oral Sci 2004; 112: 398–405.
- Jonasson G, Kiliaridis S: The association between the masseter muscle, the mandibular alveolar bone mass and thickness in dentate women. Arch Oral Biol 2004; 49: 1001–1006.
- Emshoff R, Emshoff I, Rudisch A, Bertram S: Reliability and temporal variation of masseter muscle thickness measurements utilizing ultrasonography. J Oral Rehabil 2003; 30: 1168–1172.
- Satiroğlu F, Arun T, Işik F: Comparative data on facial morphology and muscle thickness using ultrasonography. Eur J Orthod 2005; 27: 562–567.
- Egwu OA, Njoku CO, Ewunonu EO, Ukoha U, Eteudo AN, Mgbachi CE: Assessment of masseter muscle thickness in an adult Nigerian population: an ultrasound based study. Int J Biomed Res 2012; 3: 143–146.
- Oh S, Kim JH, Choi SW, Lee HJ, Hong J, Kwon SH: Physician confidence in artificial intelligence: an online mobile survey. J Med Internet Res 2019; 21: e12422.
- Dreyer KJ, Geis JR: When machines think: radiology’s next frontier. Radiology 2017; 285: 713–718.
- Sur J, Bose S, Khan F, Dewangan D, Sawriya E, Roul A: Knowledge, attitudes, and perceptions regarding the future of artificial intelligence in oral radiology in India: a survey. Imaging Sci Dent 2020; 50: 193–198.
- Alsharqi M, Woodward WJ, Mumith JA, Markham DC, Upton R, Leeson P: Artificial intelligence and echocardiography. Echo Res Pract 2018; 5: R115–R125.
- Hwang J-J, Jung Y-H, Cho B-H, Heo M-S: An overview of deep learning in the field of dentistry. Imaging Sci Dent 2019; 49: 1–7.
- Bas B, Ozgonenel O, Ozden B, Bekcioglu B, Bulut E, Kurt M: Use of artificial neural network in differentiation of subgroupsof temporomandibular internal derangements: a preliminary study. J Oral Maxillofac Surg 2012; 70: 51–59.
- Keser G, Namdar Pekiner F: Attitudes, perceptions and knowledge regarding the future of artificial intelligence in oral radiology among a group of dental students in Turkey: a survey. Clin Exp Health Sci 2021; 11: 637–641.
- Lee J-H, Kim D-H, Jeong S-N, Choi S-H: Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent 2018; 77: 106–111.
- Poedjiastoeti W, Suebnukarn S: Application of convolutional neural network in the diagnosis of jaw tumors. Health Inform Res 2018; 24: 236–241.
- Faber J, Faber C, Faber P: Artificial intelligence in orthodontics. APOS Trends Orthod 2019; 9: 201–205.
- Woo S-Y, Lee S-J, Yoo J-Y, Han J-J, Hwang S-J, Huh K-H et al.: Autonomous bone reposition around anatomical landmark for robotassisted orthognathic surgery. J Craniomaxillofac Surg 2017; 45: 1980–1988.
- Shin Y, Yang J, Lee YH, Kim S: Artificial intelligence in musculoskeletal ultrasound imaging. Ultrasonography 2021; 4: 30–44.
- Ronneberger O, Fischer P, Brox T: U-net: convolutional networks for biomedical image segmentation. Springer 2015: 234–241.
- Shelhamer E, Long L, Darrell T: Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 2017; 39: 640–651.
- Ronneberger O, Fischer P, Brox T: U-Net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A (eds): Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Springer, Cham 2015: 9351.
- Nwawka OK: Update in musculoskeletal ultrasound research. Sports Health 2016; 8: 429–437.
- Powers J, Kremkau F: Medical ultrasound systems. Interface Focus 2011; 1: 477–489.
- Liu F, Zhou Z, Samsonov A, Blankenbaker D, Larison W, Kanarek A et al.: Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection. Radiology 2018; 289: 160–169.
- Lakhani P, Sundaram B: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 2017; 284: 574–582.
- Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017; 542: 115–118.
- Arcadu F, Benmansour F, Maunz A, Willis J, Haskova Z, Prunotto M: Deep learning algorithm predicts diabetic retinopathy progression in individual patients. NPJ Digit Med 2019; 2: 92.
- Orhan K, Yazici G, Kolsuz ME, Kafa N, Bayrakdar IS, Çelik Ö: An artificial intelligence hypothetical approach for masseter muscle segmentation on ultrasonography in patients with bruxism. J Adv Oral Res 2021; 12: 206–213.
- Prevost R, Salehi M, Jagoda S, Kumar N, Sprung J, Ladikos A et al.: 3D freehand ultrasound without external tracking using deep learning. Med Image Anal 2018; 48: 187–202.
- Looney P, Stevenson GN, Nicolaides KH, Plasencia W, Molloholli M, Natsis S et al.: Fully automated, real-time 3D ultrasound segmentation to estimate first trimester placental volume using deep learning. JCI Insight 2018; 3: e120178.