Anonymous (2002). Enactment date of sanitary and epidemiological rules and regulations “Hygienic Requirements for Safety and Nutrition Value of Food Products. Sanitary Rules and Regulations (SanPin) 2.3.2.1078–01” (01.07.2002). Available at: http://www.gosstandart.info/data/documents/sanpin2.3.2.1078-01.doc
Arhipova I., Bāliņa S. (2006). Statistika ekonomikā. Risinājumi ar SPSS un Microsoft Excel [Economics Statistics. Solutions with SPSS and Microsoft Excel]. Datorzinību centrs, Rīga. 352 lpp. (in Latvian).
Chan E. W. C., Lim Y. Y., Wong S. K., Lim K. K., Tan S. P., Lianto F. S., Yong M. Y. (2009). Effect of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chem., 113, 166–172.10.1016/j.foodchem.2008.07.090
Dai J., Mumper R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules,15 (10), 7313–7352.10.3390/molecules15107313625914620966876
Dawidowicz, A. L., Wianowska, D., Baraniak, B. (2006). The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxidant properties of extracts). Lebensmittel-Wissenschaft und Technologic, 39, 308–315.10.1016/j.lwt.2005.01.005
Devatkal, S. K., Thorat, P., Manjunatha, M. (2014). Effect of vacuum packaging and pomegranate peel extract on quality aspects of ground goat meat and nuggets. J. Food Sci.Technol., 51 (10), 2685–2691.10.1007/s13197-012-0753-5419020625328212
Dubova, L., Alsina, I., Balins, A., Rungis, D., Kruma, Z., Zukauska, I. (2011). Determination of antibacterial and antiradical activity of Origanum vulgare clones grown in Latvia. Acta Horticult., 925, 291–297.10.17660/ActaHortic.2011.925.43
Giner, M. J., Vegara, S., Funes, L., Martí, N., Saura, D., Micol, V., Valero, M. (2012). Antimicrobial activity of food-compatible plant extracts and chitosan against naturally occurring micro-organisms in tomato juice. J. Sci. Food Agricult., 92 (9), 1917–1923.10.1002/jsfa.556122246685
Gülçin, Ż., Küfrevioglu, Ö. Ż., Oktay, M., Büyükokuroglu, M. E. (2004). Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J. Ethnopharmacol., 90 (2), 205–215.10.1016/j.jep.2003.09.02815013182
Hayouni, E. A., Chraief, I., Abedrabba, M., Bouix, M., Leveau, J. Y., Mohammed, H., Hamdi M. (2008). Tunisian Salvia officinalis L. and Schinus molle L. essential oils: Their chemical compositions and their preservative effects against Salmonella inoculated in minced beef meat. Int. J. Food Microbiol., 125, 242–251.10.1016/j.ijfoodmicro.2008.04.00518511141
Huq, T., Vu, K. D., Riedl, B., Bouchard, J., Lacroix, M. (2015). Synergistic effect of gamma (γ)-irradiation and microencapsulated antimicrobials against Listeria monocytogenes on ready-to-eat (RTE) meat. Food Microbiol., 46, 507–514.10.1016/j.fm.2014.09.01325475322
Hygreeva, D., Pandey, M. C., Radhakrishna, K. (2014). Potential applications of plant based derivatives as fat replacers, antioxidants and antimicrobials in fresh and processed meat products. Meat Sci., 98, 47–57.10.1016/j.meatsci.2014.04.00624845336
Jiménez-Zamora A., Delgado-Andrade C., Rufián-Henares, J. A. (2016). Antioxidant capacity, total phenols and color profile during the storage of selected plants used for infusion. Food Chem., 199, 339–346.10.1016/j.foodchem.2015.12.019
Kruma, Z., Straumite, E. (2012). Bioloģiski aktīvas vielas pārtikas produktos [Biologically Active Compounds in Food Products]. Latvia University of Agriculture, Jelgava. 280 lpp. (in Latvian).
Marino, M., Bersani, C., Comi, G. (2001). Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae. Int. J. Food Microbiol., 67, 187–195.10.1016/S0168-1605(01)00447-0
McCarthy, T. L., Kerry, J. P., Kerry, J. F., Lynch, P. B., Buckley D. J. (2001). Assessment of the antioxidant potential of natural food and plant extracts in fresh and previously frozen pork patties. Meat Sci., 57, 177–184.10.1016/S0309-1740(00)00090-5
Oreopoulou, V., Tzia, C., Liadakis G. (2003). Extraction of natural antioxidants. In: Tzia, C., Liadakis, G. (eds.). Extraction Optimization in Food Engineering. Marcel Dekker Inc., New York, pp. 329–346.10.1201/9780824756185.ch10
Papadakis, S. E., Abudal-Malek, S., Kamden, R. E., Yam, K. L. (2000). Versatile and inexpensive techniques for measuring colour of foods. Food Technol., 54 (12), 48–51.
Peńalvo, G. C., Robledo, V. R., Callado, C. S.-C., Santander-Ortega, M. J., Castro-Vázquez, L., Victoria Lozano, M., Arroyo-Jiménez, M. M. (2016). Improving green enrichment of virgin olive oil by oregano. Effects on antioxidants. Food Chem., 197, 509–515.10.1016/j.foodchem.2015.11.00226616982
Shah, M. A., Bosco, S. J., Mir S. A. (2014). Plant extracts as natural antioxidants in meat and meat products. Meat Sci., 98, 21–33.10.1016/j.meatsci.2014.03.02024824531
Silina, L. (2014). Staltbriežu gaļas pārstrādes produktu kvalitātes izvērtējums [Quality evaluation of red deer meat processing products]. Dissertation Thesis, Latvia University of Agriculture. Jelgava. 134 lpp. (in Latvian).
Søltoft-Jensen, J., Hansen, F. (2005). New chemical and biochemical hurdles. In: Sun, D. W (Ed.). Emerging Technologies for Food Processing, Food Science and Technology. Elsevier Academic Press, Cambridge, 387–416.10.1016/B978-012676757-5/50017-7
Stević, T., Berić, T., Šavikin, K., Soković, M., Goševac, D., Dimkić, I., Stanković, S. (2014). Antifungal activity of selected essential oils against fungi isolated from medicinal plant. Ind. Crops Prod., 55, 116–122.10.1016/j.indcrop.2014.02.011
Stratil, P., Klejdus, B., Kubįņ, V. (2007). Determination of phenolic compounds and their antioxidant activity in fruits and cereals. Talanta, 71 (4), 1741–1751.10.1016/j.talanta.2006.08.012
Su, L., Yin, J. J., Charles, D., Zhou, K., Moore, J., Yu, L. (2007). Total phenolic contents, chelating capacities, and radical-scavenging properties of black peppercorn, nutmeg, rosehip, cinnamon and oregano leaf. Food Chem., 100 (3), 990–997.10.1016/j.foodchem.2005.10.058
Tanabe, H., Yoshida, M., Tomita N. (2002). Comparison of the antioxidant activities of 22 commonly used culinary herbs and spices on the lipid oxidation of pork meat. Animal Sci. J., 73, 389–393.10.1046/j.1344-3941.2002.00054.x
Tang, S., Kerry, J. P., Sheehan, D., Buckley, D. J., Morrissey, P. A. (2001). Antioxidative effect of added tea catechins on susceptibility of cooked red meat, poultry and fish patties to lipid oxidation. Food Res. Int., 34, 651–657.10.1016/S0963-9969(00)00190-3
Tomsone, L. (2015). Mārrutku un lupstāju bioloģiski aktīvo vielu izpēte [Investigation of biological active substances in horseradish and lovage]. Dissertation Thesis, Latvia University of Agriculture, Jelgava (in Latvian).
Tomsone, L., Kruma, Z. (2015). Stability of rapeseed oil with horseradish Armoracia rusticana L. and lovage Levisticum officinale L. extracts under medium temperature accelerated storage conditions. Agron. Res., 13 (4), 1120–1130.
Tomsone, L., Kruma, Z. (2013). Comparison of different solvents for isolation of phenolic compounds from horseradish (Armoracia rusticana L.) leaves. In: Proceedings of the 19th International Scientific Conference “Research for Rural Development”, 15–17 May 2013, Jelgava, Latvia. Vol. 1. pp. 104–110
Tomsone, L., Kruma, Z., Thierry, T., Tian, Ming Z. (2014). Natural antioxidants of horseradish and lovage extracted by accelerated solvent extraction. J. Hygienic Eng. Design, UDC635.162:542.613]:615.272, pp. 16–24
Viskelis, P., Rubinskiene, M., Jasutiene, I., Sarkinas, A., Daubaras, R., Cesoniene, L. (2009). Anthocyanins, antioxidative, and antimicrobial properties of American cranberry (Vaccinium macrocarpon Ait.) and their press cakes. J. Food Sci., 74 (2), 157–161.10.1111/j.1750-3841.2009.01066.x19323730
Zhang, W., Xiao, S., Samaraweera, H., Lee, E. J., Ahn D. U. (2010). Improving functional value of meat products. Meat Sci., 86, 15–31.10.1016/j.meatsci.2010.04.01820537806