Have a personal or library account? Click to login

Preliminary study on the influence of UV-C irradiation on microorganism viability and polyphenol compounds content during winemaking of ‘Regent’ red grape cultivar

Open Access
|Jul 2017

References

  1. 1. Santos, M.C., Nunes, C., Saraiva, J.A. & Coimbra, M.A. (2012). Chemical and physical methodologies for the replacement/reduction of sulfur dioxide use during winemaking: review of their potentialities and limitations. Eur. Food. Res. Technol. 234, 1–12. DOI: 10.1007/s00217-011-1614-6.10.1007/s00217-011-1614-6
  2. 2. Machado, R.M.D., Toledo, M.C.F. & Vicente, E. (2009). Sulphite content in some Brazilian wines: analytical determination and estimate of dietary exposure. Eur. Food. Res. Technol. 229(3), 383–389. DOI: 10.1007/s00217-009-1071-7.10.1007/s00217-009-1071-7
  3. 3. Rizzotti, L., Levav, N., Fracchetti, F., Felis, G.E. & Torriani, S. (2015). Effect of UV-C treatment on the microbial population of white and red wines, as revealed by conventional plating and PMA-qPCR methods. Food Control. 47, 407–412. DOI: 10.1016/j.foodcont.2014.07.052.10.1016/j.foodcont.2014.07.052
  4. 4. Du Toit, M. & Pretorius, I.S. (2000). Microbial spoilage and preservation of wine: using weapons from nature’s own arsenal–a review. S. Afr. J. Enol. Vitic. 21, 74–96.
  5. 5. Fredericks, I.N., Du Toit, M. & Krügel, M. (2011). Efficacy of ultraviolet radiation as an alternative technology to inactivate microorganisms in grape juices and wines. Food Microbiol. 28(3), 510–517. DOI: 10.1016/j.fm.2010.10.018.10.1016/j.fm.2010.10.01821356459
  6. 6. Salaha, M.I., Kallithraka, S., Marmaras, I., Koussissi, E. & Tzourou, I. (2008). A natural alternative to sulphur dioxide for red wine production: Influence on colour, antioxidant activity and anthocyanin content. J. Food. Compos. Anal. 21, 660–666. DOI: 10.1016/j.jfca.2008.03.010.10.1016/j.jfca.2008.03.010
  7. 7. Franz, C.M.A.P., Specht, I., Cho, G.S., Graef, V. & Stahl, M.R. (2009). UV-C-inactivation of microorganisms in naturally cloudy apple juice using novel inactivation equipment based on Dean vortex technology. Food Control. 20, 1103–1107. DOI: 10.1016/j.foodcont.2009.02.010.10.1016/j.foodcont.2009.02.010
  8. 8. Koutchma. T. (2009). Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food Bioprocess Tech. 2, 138–155. DOI: 10.1007/s11947-008-0178-3.10.1007/s11947-008-0178-3
  9. 9. Lu, G., Li, C., Liu, P., Cui, H., Yao, Y. & Zhang, Q. (2010). UV inactivation of microorganisms in beer by a novel thin-film apparatus. Food Control. 21, 1312–1317. DOI: 10.1016/j.foodcont.2010.03.007.10.1016/j.foodcont.2010.03.007
  10. 10. Taze, B.H., Unluturk, S., Buzrul, S. & Alpas, H. (2015). The impact of UV-C irradiation on spoilage microorganisms and colour of orange juice. J. Food. Sci. Tech. 52(2), 1000–1007. DOI: 10.1007/s13197-013-1095-7.10.1007/s13197-013-1095-7432505125694711
  11. 11. Islam, M.S., Patras, A., Pokharel, B., Wu, Y., Vergne, M. J., Shade, L., Xiao, H. & Sasges, M. (2016). UV-C irradiation as an alternative disinfection technique: Study of its effect on polyphenols and antioxidant activity of apple juice. Innov Food Sci. Emerg. 34, 344–351. DOI: 10.1016/j.ifset.2016.02.009.10.1016/j.ifset.2016.02.009
  12. 12. Samoticha, J., Wojdyło, A., Chmielewska, J. & Oszmiański, J. (2016). The effects of flash release conditions on the phenolic compounds and antioxidant activity of Pinot noir red wine. Eur. Food Res. Technol. 1–9. DOI: 10.1007/s00217-016-2817-7.10.1007/s00217-016-2817-7
  13. 13. Mijowska, K., Ochmian, I. & Oszmiański J. (2016). Impact of Cluster Zone Leaf Removal on Grapes cv. Regent Polyphenol Content by the UPLC-PDA/MS Method. Molecules. 21(12), 1688. DOI: 10.3390/molecules21121688.10.3390/molecules21121688627422627973426
  14. 14. Keyser, M., Műller, I. A., Cilliers, F.P., Nel, W. & Gouws, P.A. (2008). Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innov Food Sci. Emerg. 9(3), 348–354. DOI: 10.1016/j.ifset.2007.09.002.10.1016/j.ifset.2007.09.002
  15. 15. Lorenzini, M., Fracchetti, F., Bolla, V., Stefanelli, E., Rossi, F. & Torriani, S. (2010). Ultraviolet light (UV-C) irradiation as an alternative technology for the control of microorganisms in grape juice and wine. In 33rd World Congress of Vine and Wine, 8th General Assembly of the OIV (pp. 20–25).
  16. 16. Unluturk, S. & Atilgan, M.R. (2014). UV-C Irradiation of Freshly Squeezed Grape Juice and Modeling Inactivation Kinetics. J. Food Process. Eng. 37(4), 438–449. DOI: 10.1111/jfpe.12099.10.1111/jfpe.12099
  17. 17. Falguera, V., Forns, M. & Ibarz, A. (2013). UV–vis irradiation: An alternative to reduce SO2 in white wines? LWT – Food Sci. Technol. 51, 59-64. DOI: 10.1016/j.lwt.2012.11.006.10.1016/j.lwt.2012.11.006
  18. 18. Pala, Ç.U. & Toklucu, A.K. (2013). Effects of UV-C light processing on some quality characteristics of grape juices. Food Bioprocess Tech. 6(3), 719–725. DOI: 10.1007/s11947-012-0808-7.10.1007/s11947-012-0808-7
  19. 19. Pala, Ç.U. & Toklucu, A.K. (2011). Effect of UV-C light on anthocyanin content and other quality parameters of pomegranate juice. J. Food Compos. Anal. 24(6), 790–795. DOI: 10.1016/j.jfca.2011.01.003.10.1016/j.jfca.2011.01.003
  20. 20. Matias, F., Pinto, A.F., Torgal, I., Alves, M., Grácio, J. & Mira, H. (2016). The Ultraviolet radiation (UV-C) for the microbiological stabilization of red wine. In BIO Web of Conferences 7, 39th World Congress of Vine and Wine (Vol. 7, p. 02013). EDP Sciences. DOI: 10.1051/bioconf/20160702013.10.1051/bioconf/20160702013
  21. 21. Pinto, E.P., Perin, E.C., Schott, I.B., da Silva Rodrigues, R., Lucchetta, L., Manfroi, V. & Rombaldi, C.V. (2016). The effect of postharvest application of UV-C radiation on the phenolic compounds of conventional and organic grapes (Vitis labrusca cv.‘Concord’). Posthar. Biol. Technol. 120, 84–91. DOI: 10.1016/j.postharvbio.2016.05.015.10.1016/j.postharvbio.2016.05.015
  22. 22. Cantos, E., Espín, J.C., Fernández, M.J., Oliva, J. & Tomás-Barberán, F.A. (2003). Postharvest UV-C-irradiated grapes as a potential source for producing stilbene-enriched red wines. J. Agric. Food Chem. 51(5), 1208–1214. DOI: 10.1021/jf020939z.10.1021/jf020939z12590457
Language: English
Page range: 130 - 137
Published on: Jul 8, 2017
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Kamila Mijowska, Krzysztof Cendrowski, Bartłomiej Grygorcewicz, Jan Oszmiański, Paweł Nawrotek, Ireneusz Ochmian, Beata Zielińska, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.