Have a personal or library account? Click to login
Carbon nanotubes functionalized by salts containing stereogenic heteroatoms as electrodes in their battery cells Cover

Carbon nanotubes functionalized by salts containing stereogenic heteroatoms as electrodes in their battery cells

Open Access
|Dec 2016

References

  1. 1. Fergus, J.W. (2010). Recent developments in cathode materials for lithium ion batteries. J. Pow. Sou. 195, 939–954. DOI: 10.1016/j.jpowsour.2009.08.089.10.1016/j.jpowsour.2009.08.089
  2. 2. Antolini, E. (2004). LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties. Sol. State Ionics. 170, 159–171. DOI: 10.1016/j.ssi.2004.04.003.10.1016/j.ssi.2004.04.003
  3. 3. Rougier, A., Bravereau, P. & Delmas, D. (1996). Optimization of the composition of the Li1-zNi1+zO2 electrode materials: structural, magnetic, and electrochemical studies. J. Electrochem. Soc.143, 1168–1175. DOI: 10.1149/1.1836614.10.1149/1.1836614
  4. 4. Liu, H., Yang, Y. & Zhang, J. (2007). Reaction mechanism and kinetics of lithium ion battery cathode material LiNiO2 with CO2. J. Pow. Sou. 173, 556–561. DOI: 10.1016/j.jpowsour.2007.04.083.10.1016/j.jpowsour.2007.04.083
  5. 5. Kanno, R., Kubo, H., Kawamoto, Y., Kamiyama, T., Izumi, F., Takeda, Y. & Takano, M. (1994). Phase Relationship and Lithium Deintercalation in Lithium Nickel Oxides. Sol. State Chem. 110, 216–225. DOI: 10.1006/jssc.1994.1163.10.1006/jssc.1994.1163
  6. 6. Pérès, J.P., Demourgues, A. & Delmas, C. (1998). Structural investigations on Li0.65zNi1+zO2 cathode material: XRD and EXAFS studies. Sol. State Ion. 111, 135–144. DOI: 10.1016/S0167-2738(98)00122-2.10.1016/S0167-2738(98)00122-2
  7. 7. Li, D., Peng, Z., Ren, H., Guo, W. & Zhou, Y. (2008). Synthesis and characterization of LiNi1xCoxO2 for lithium batteries by a novel method. Mater. Chem. Phys. 107, 171–176. DOI: 10.1021/cm0102537.10.1021/cm0102537
  8. 8. Baskaran, R., Kuwata, N., Kamishima, O., Kawamura, J. & Selvasekarapandian, S. (2009). Structural and electrochemical studies on thin film LiNi0.8Co0.2O2 by PLD for micro battery. Sol. State Ion. 180, 636–643. DOI: 10.1016/j.ssi.2008.11.012.10.1016/j.ssi.2008.11.012
  9. 9. Sakamoto, K., Hirayama, M., Sonoyama N., Mori, D., Yamada, A., Tamura, K., Mizuki, J. & Kanno, R. (2009). Surface Structure of LiNi0.8Co0.2O2: a New Experimental Technique Using in Situ X-ray Diffraction and Two-Dimensional Epitaxial Film Electrodes. Chem. Mater. 21(13), 2632–2640. DOI: 10.1021/cm8033559.10.1021/cm8033559
  10. 10. Martha, S.K., Sclar, H., Framowitz, Z.S., Kovacheva, D., Saliyski, N., Gofer, Y., Sharon, P., Golik, E., Markovsky, B. & Aurbach, D. (2009). A comparative study of electrodes comprising nanometric and submicron particles of LiNi-0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.40Mn0.40Co0.20O2 layered compounds. J. Pow. Sou. 189, 248–255. DOI: 10.1016/j.jpowsour.2008.09.090.10.1016/j.jpowsour.2008.09.090
  11. 11. Lu, C.H. & Lin, Y.K. (2009). Microemulsion preparation and electrochemical characteristics of LiNi1/3Co1/3Mn1/3O2 powders. J. Pow. Sou. 189, 40–44. DOI: 10.1016/j.jpowsour.2008.12.036.10.1016/j.jpowsour.2008.12.036
  12. 12. Koksbang, R. (1991). Reversibility of the electrochemical lithium insertion in “Cr3O8”—comparison with LiCr3O8. Electrochim. Acta 36, 127–133. DOI: 10.1016/0013-4686(91)85189-E.10.1016/0013-4686(91)85189-E
  13. 13. Vidya, R., Ravindran, P., Kjekshus, A. & Fjellvåg, H. (2006). Crystal and electronic structures of Cr3O8 and LiCr3O8: Probable cathode materials in Li batteries. Phys. Rev. B. 73, 235113-1-235113-13. DOI: 10.1103/PhysRevB.73.235113.10.1103/PhysRevB.73.235113
  14. 14. Naoki, K. & Feng, W. (2010). A Comprehensive Review on Separation Methods and Techniques for Single-Walled Carbon Nanotubes. Materials 3(7), 3818–3844. DOI: 10.3390/ma3073818.10.3390/ma3073818544579728883313
  15. 15. Mukherjee, A., Combs, R., Chattopadhyay, J. & Abmayr, D.W. (2008). Attachment of nitrogen and oxygen centered radicals to single-walled carbon nanotubes salts. Chem. Mater. 20, 7339–7343. DOI: 10.1021/cm8014226.10.1021/cm8014226
  16. 16. Chen, Y., Haddon, R.C., Fang, S., Rao, A.M., Eklund, P.C., Lee, W.H., Dicekey, E.C., Grulke, E.A., Pendergrass, J.C., Chavan, A., Haley, B.E. & Smalley, R.E. (1998). Chemical attachment of organic functional groups to single-walled carbon nanotubes material. J. Mater. Res. 13, 2433–2431. DOI: 10.1557/JMR.1998.0337.10.1557/JMR.1998.0337
  17. 17. Gao, C., He, H., Zhou, L., Zheng, X. & Zhang, Y. (2009). Scalable Functional Group Engineering of Carbon Nanotubes by Improved One-Step Nitrene Chemistry. Chem. Mater. 21, 360–370. DOI: 10.1021/cm802704c.10.1021/cm802704c
  18. 18. Han, J. & Gao, Ch. (2006). Functionalization of carbon nanotubes and other nanocarbons by azide chemistry. Nano-Micro Lett. 2(3), 213–226. DOI: 10.5101/nml.v2i3.p213-226.10.1007/BF03353643
  19. 19. Dimitrios, T., Tagmatarchis, N., Bianco, A. & Prato, M. (2006). Chemistry of Carbon Nanotubes. Chem. Rev.106, 1105–1136. DOI: 10.1021/cr050569o.10.1021/cr050569o16522018
  20. 20. Khabashesku, V. N., Billups, W. E. & Margrave, J.L. (2002). Fluorination of Single-Wall Carbon Nanotubes and Subsequent Derivatization Reactions. Acc. Chem. Res. 35, 1087–1095. DOI: 10.1021/ar020146y.10.1021/ar020146y12484797
  21. 21. Viswanathan, G., Chakrapani, N., Yang, H., Wei, B., Chung, H., Cho, K., Ryu, C.Y. & Ajayan, P.M. (2003). Single-Step in Situ Synthesis of Polymer-Grafted Single-Wall Nanotube Composites. J. Am. Chem. Soc.125, 9258–9259. DOI: 10.1021/ja0354418.10.1021/ja035441812889931
  22. 22. Drabowicz, J., Krasowska, D., Janicka, M., Zajac, A., Wach-Panfiłow, P., Ciesielski, W., Michalski, O., Kulawik, D., Pyzalska, M., Dudzinski, B., Pokora-Sobczak, P., Urbaniak, M. & Makowski, T. (2016). A stereogenic heteroatom-containing substituent as an inducer of chirality in the derivatives of thiophenes (mono, oligo, and poly), fullerenes C60, and multiwalled nanotubes, Phosp., Sulf. Silic. 191, 211–219. DOI: 10.1080/10426507.2015.1079198.10.1080/10426507.2015.1079198
  23. 23. Pyzalska, M., Zdanowska, S., Kulawik, D., Pavlyuk, V., Drabowicz, J. & Ciesielski, W. (2016). Właściwości fizykochemiczne bromowanych wielościennych nanorurek węglowych funkcjonalizowanych tiofosforanem O–metylo–O2–naftylo-–LN–metyloefedryniowym, Przem. Chem. 94/12, 2189–2194. DOI: 10.15199/62.2015.12.20.10.15199/62.2015.12.20
  24. 24. Bulusheva, L.G., Okotrub, A.V., Flahaut, E., Asanov, I.P., Gevko, P.N., Koroteev, V.O., Fedoseeva, Y.V., Yaya, A. & Ewels, C.P. (2012). Bromination of Double-Walled Carbon Nanotubes. Chem. Mater. 24, 2708–2715. DOI: 10.1021/cm300630.
  25. 25. Souza–Filho, A.G., Endo, M., Muramatsu, H., Hayashi, T., Kim, Y.A., Barros, E.B., Akuzawa, N., Samzonidze, G.G., Saito, R. & Dresselhaus, M.S. (2006). Resonance Raman scattering studies in Br-2-adsorbed double-wall carbon nano-tubes. Phys. Rev. B. 73, 235413-1–235413-12. DOI: 10.1103/PhysRevB.73.235413.10.1103/PhysRevB.73.235413
  26. 26. A process for preparing iodinated carbon nanotubes. Application to the Polish Patent Office No. P. 395834.
  27. 27. Drabowicz, J., Ciesielski, W. & Kulawik, D.: Polish patent pending P-409662.
Language: English
Page range: 22 - 26
Published on: Dec 30, 2016
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Sandra Zdanowska, Magdalena Pyzalska, Józef Drabowicz, Damian Kulawik, Volodymyr Pavlyuk, Tomasz Girek, Wojciech Ciesielski, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.