References
- Albakosh, M.A., Naidoo, R.K. & Kirby, B. (2015). Identification of epiphytic bacterial communities associated with the brown alga Splachnidium rugosum. J. Appl. Phycol 28(3): 1891–1901. 10.1007/s10811-015-0725-z
- Bowen, J.L., Ward, B.B. & Morrison, H.G. (2011). Microbial community composition in sediments resists perturbation by nutrient enrichment. Isme Journal 5(9): 1540–1548. 10.1038/ismej.2011.22
- Buesing, N., Filippini, M. & Bürgmann, H. (2009). Microbial communities in contrasting freshwater marsh microhabitats. Fems Microbiol. Ecol 69(1): 84–97. 10.1111/j.1574-6941.2009.00692.x
- Burke, C., Thomas, T. & Lewis, M. (2011). Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. Isme Journal 5(4): 590–600. 10.1038/ismej.2010.164
- Cai, X., Gao, G. & Yang, J. (2014). An ultrasonic method for separation of epiphytic microbes from freshwater submerged macrophytes. J. Basic Microb 54(7): 758–761. 10.1002/jobm.201300041
- Compant, S., Clément, C. & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biology & Biochemistry 42(5): 669–678. 10.1016/j.soilbio.2009.11.024
- Crump, B.C. & Koch, E.W. (2008). Attached bacterial populations shared by four species of aquatic angiosperms. Appl. Environ. Microbiol 74(19): 5948–5957. 10.1128/AEM.00952-08
- Dimitriu, P.A., Pinkart, H.C. & Peyton, B.M. (2008). Spatial and Temporal Patterns in the Microbial Diversity of a Meromictic Soda Lake in Washington State. Appl. Environ. Microbiol 74(15): 4877–4888. 10.1128/AEM.00455-08
- Fan, Z., Han, R.M. & Ma, J. (2016). Submerged macrophytes shape the abundance and diversity of bacterial denitrifiers in bacterioplankton and epiphyton in the Shallow Fresh Lake Taihu, China. Environmental Science & Pollution Research 23(14): 14102–14114. 10.1007/s11356-016-6390-1
- Feng, B.W., Li, X.R. & Wang, J.H. (2009). Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea. Fems Microbiol. Ecol 70(2): 80–92. DOI:10.1111/j.1574-6941.2009.00772.x.
- Field, C.B. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374): 237–240. 10.1126/science. 281.5374.237
- Flombaum, P., Gallegos, J.L. & Gordillo, R.A. (2013). Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl. Acad. Sci. USA 110(24): 9824–9829. 10.1073/pnas.1307701110
- Glã Ckner, F.O., Fuchs, B.M. & Amann, R. (1999). Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol 65(8): 3721–3726.
- Godmaire, H. & Nalewajko, C. (1989). Growth, photosynthesis, and extracellular organic release in colonized. Canadian Journal of Botany 67(12): 3429–3438.
- Gordon-Bradley, N., Lymperopoulou, D.S. & Williams, H.N. (2014). Differences in bacterial community structure on Hydrilla verticillata and Vallisneria americana in a freshwater spring. Microbes & Environments 29(1): 67–73. 10.1264/jsme2.ME13064
- Haller, W.T., Sutton, D.L. & Barlowe, W.C. (1974). Effects of Salinity on Growth of Several Aquatic Macrophytes. Ecology 55(4): 891–894.
- He, D., Ren, L. & Wu, Q. (2012). Epiphytic bacterial communities on two common submerged macrophytes in Taihu Lake: diversity and host-specificity. Chinese journal of oceanology and limnology 30(2): 237–247. 10.1007/s00343-012-1084-0
- He, D., Ren, L. & Wu, Q.L. (2014). Contrasting diversity of epibiotic bacteria and surrounding bacterioplankton of a common submerged macrophyte, Potamogeton crispus in freshwater lakes. Fems Microbiol. Ecol 90(3): 551–562. 10.1111/1574-6941.12414
- Hempel, M., Blume, M. & Blindow, I. (2008). Epiphytic bacterial community composition on two common submerged macrophytes in brackish water and freshwater. Bmc Microbiology 8(1): 58. 10.1186/1471-2180-8-58
- Hempel, M., Grossart, H.P. & Gross, E.M. (2009). Community composition of bacterial biofilms on two submerged macrophytes and an artificial substrate in a pre-alpine lake. Aquat. Microb. Ecol 58(1): 79–94. 10.3354/ame01353
- Huang, J., Xin, Y. & Cao, X. (2011). Phylogenetic diversity and characterization of 2-haloacid degrading bacteria from the marine sponge Hymeniacidon perlevis. World J. Microb. Biot 27(8): 1787–1794. 10.1007/s11274-010-0636-8
- Huo, Y.Z., Xu, S.N. & Wang, Y.Y. (2011). Bioremediation effciencies of gracilaria verrucosa cultivated in an enclosed sea area of Hangzhou Bay, China. J. Appl. Phycol23(2): 173–182. 10.1007/s10811-010-9584-9
- Huss, A.A. & Wehr, J.D. (2004). Strong Indirect Effects of a Submersed Aquatic Macrophyte, Vallisneria americana on Bacterioplankton Densities in a Mesotrophic Lake. Microbial Ecol 47(4): 305–315. 10.1007/s00248-003-1034-7
- Jiang, R., Wang, J.X. & Huang, B. (2016). Phylogenetic analysis of bacterial community composition in sediments with organic contaminants from the Jiaojiang estuary in China. Mar. Pollut. Bull 109(1): 558–565. 10.1016/j.marpolbul. 2016.03.046
- Johnson, J.A. & Newman, R.M. (2011). A comparison of two methods for sampling biomass of aquatic plants. J. Aquat. Plant Manage 49(1): 1–8.
- Langille, M.G.I., Zaneveld, J. & Caporaso, J.G. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol 31(9): 814–821. 10.1038/nbt.2676
- Li, F., Zhu, L. & Xie, Y. (2016). Fragment growth performance of the invasive submerged macrophyte Myriophyllum spicatum under conditions of different water depths and sediment types. Aquatic Ecology 50(4): 727–734. 10.1007/s10452-016-9589-9
- Liu, J., Fu, B. & Yang, H. (2015). Phylogenetic shifts of bacterioplankton community composition along the Pearl Estuary: the potential impact of hypoxia and nutrients. Frontiers in Microbiology 6(64): 64. 10.3389/fmicb.2015.00064
- Liu, Q., Sun, B. & Huo, Y. (2018). Nutrient bioextraction and microalgae growth inhibition using submerged macrophyte Myriophyllum spicatum in a low salinity area of East China Sea. Mar. Pollut. Bull 127: 67–72. 10.1016/j. marpolbul.2017.11.031
- Liu, T., Zhang, A.N. & Wang, J. (2018). Integrated biogeography of planktonic and sedimentary bacterial communities in the Yangtze river. Microbiome 6(1): 16. 10.1186/s40168-017-0388-x
- Lozupone, C.A. & Knight, R. (2007). Global patterns in bacterial diversity. P. Natl Acad. Sci. Usa 104(27): 11436–11440. 10.1073/pnas.0611525104
- Magoc, T. & Salzberg, S.L. (2011). Flash: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21): 2957–2963. 10.1093/bioinformatics/btr507
- Markowitz, V.M., Chen, I.A. & Palaniappan, K. (2012). IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40: D115–D122. 10.1093/nar/gkr1044
- Mcbride, M.J., Liu, W. & Lu, X. (2014). The Family Cytophagaceae. In E. Rosenberg, E. Stackebrandt, F.L. Thompson, S. Lory & E.F. DeLong (Eds.), The Prokaryotes, fourth edn (pp. 577–593). Springer Berlin Heidelberg, Berlin, Heidelberg. 10.1007/978-3-642-38954-2_382
- McIlroy, S.J. & Nielsen, P.H. (2014). The family Saprospiraceae. In: Rosenberg, E., Stackebrandt, E., Thompson, F.L., Lory, S. & DeLong, E.F. (Eds.), The Prokaryotes, fourth edn (pp. 863–889). Berlin, Heidelberg: Springer Berlin Heidelberg. 10.1007/978-3-642-38954-2_138
- Morozova, O.V., Ratushnyak, A.A. & Yu, O. (2011). The Role of Bacterioplankton and Aquatic Macrophytes in Autopurification of Hydroecosystems Polluted with Phosphorus. Middle-East Journal of Scientific Research 7(3): 346–351.
- Novak, H.R., Sayer, C. & Isupov, M.N. (2013). Marine Rhodobacteraceae L-haloacid dehalogenase contains a novel His/Glu dyad that could activate the catalytic water. Febs Journal 280(7): 1664–1680. 10.1111/febs.12177
- Palenik, B., Brahamsha, B. & Larimer, F.W. (2003). The genome of a motile marine Synechococcus. Nature 424(6952): 1037–1042. 10.1038/nature01943
- Parfenova, V.V., Gladkikh, A.S. & Belykh, O.I. (2013). Comparative analysis of biodiversity in the planktonic and biofilm bacterial communities in Lake Baikal. Microbiology 82(1): 91–101. 10.1134/S0026261713010128
- Rimes, C.A. & Goulder, R. (1985). A note on the attachment rate of suspended bacteria to submerged aquatic plants in a calcareous stream. J. Appl. Microbiol 59(4): 389–392.
- Rimes, C.A. & Goulder, R. (1986). Quantitative observations on the ability of epiphytic bacteria to contribute to the populations of suspended bacteria in two dissimilar headstreams. Freshwater Biol 16(3): 301–311.
- Rooney, N. & Kalff, J. (2003). Interactions among epilimnetic phosphorus, phytoplankton biomass and bacterioplankton metabolism in lakes of varying submerged macrophyte cover. Hydrobiologia 501(1–3): 75–81.
- Schmalenberger, A., Schwieger, F. & Tebbe, C.C. (2001). Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rrna gene in pcr-based microbial community analyses and genetic profiling.Appl. Environ. Microbiol 67(8): 3557–3563. 10.1128/AEM.67.8.3557-3563.2001
- Søndergaard, M. (1981). Kinetics of Extracellular Release of 14 C-Labelled Organic Carbon by Submerged Macrophytes. Oikos 36(3): 331–347.
- Stanley, N.R. & Lazazzera, B.A. (2004). Environmental signals and regulatory pathways that influence biofilm formation. Mol. Microbiol 52(4): 917. 10.1111/j.1365-2958.2004.04036.x
- Van, D.G.K., Vandekerckhove, T. & Vloemans, N. (2005). Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure. Fems Microbiol. Ecol 53(2): 205–220. 10.1016/j.femsec.2004.12.006
- Wang, Y., Sheng, H.F. & He, Y. (2012). Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments using millions of Illumina tags. Appl. Environ. Microb 78(23): 8264–8271. 10.1128/AEM.01821-12
- Wu, Z., Yu, D. & Wang, Z. (2015). Great influence of geographic isolation on the genetic differentiation of Myriophyllum spicatum under a steep environmental gradient. Scientific Reports 5(4): 15618. 10.1038/srep15618
- Yang, C., Wang, Q. & Simon, P.N. (2017). Distinct Network Interactions in Particle-Associated and Free-Living Bacterial Communities during a Microcystis aeruginosa Bloom in a Plateau Lake. Front Microbiol 8: 1202. 10.3389/fmicb.2017.01202
- Zeng, J., Bian, Y. & Xing, P. (2012). Macrophyte species drive the variation of bacterioplankton community composition in a shallow freshwater lake. Applied & Environmental Microbiology 78(1): 177–184. 10.1128/AEM.05117-11
- Zhou, J., Deng, Y. & Luo, F. (2010). Functional molecular ecological networks. mBio 1(4): 1592–1601.10.1128/mBio.00169-10